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LABORATORY MEASUREMENTS OF THE SOUND 3

GENERATED BY BREAKING WAVES

by 3
Mark Richard Loewen
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on December 16, 1991 in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy
in Oceanographic Engineering

ABSTRACT

Breaking waves dissipate energy, transfer momentum from the wind to surface
currents and breaking enhances the transfer of gas and mass across the air-sea interface. 3
Breaking waves are believed to be the dominant source of sea surface sound at
frequencies greater than 500 Hz and the presence of breaking waves on the ocean surface
has been shown to enhance the scattering of microwave radiation. Previous studies have
shown that breaking waves can be detected by measuring the microwave backscatter and
acoustic radiation from breaking waves. However, these techniques have not yet proven
effective for studying the dynamics of breaking. The primary motivation for the research 3
presented in this thesis was to determine whether measurements of the sound generated
by breaking waves could be used to quantitatively study the dynamics of the breaking
process. 3

Laboratory measurements of the microwave backscatter and acoustic radiation
from two-dimensional breaking waves are described in Chapter 2. The major findings of
this Chapter are: 1) the mean square acoustic pressure and backscattered microwave
power correlate with the wave slope and dissipation for waves of moderate slope, 2) the
mean square acoustic pressure and backscattered microwave power correlate strongly
with each other, and 3) the amount of acoustic energy radiated by an individual breaking
event scaled with the amount of mechanical energy dissipated by breaking. The
observed correlations with the mean square acoustic pressure are only relevant for
frequencies greater than 2200 Hz because lower frequencies were below the first acoustic
cut-off frequency of the wave channel.

In order to study the lower frequency sound generated by breaking waves another
series of two-dimensional breaking experiments was conducted. Sound at frequencies as
low as 20 Hz was observed and the mean square acoustic pressure in the frequency band
from 20 Hz- I kHz correlated strongly with the wave slope and dissipation. A
characteristic low frequency signal was observed immediately following the impact of
the plunging wave crest. The origin of this low frequency signal was found to be the
pulsating cylinders of air which are entrained by the plunging waves. The pulsation
frequency correlated with both the wave slope and dissipation. Following the
characteristic constant frequency signal, approximately 0.25 s after the initial impact of
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the plunging crest, another low frequency signal was typically observed. These signals
were generally lower in frequency initially and then increased in frequency as time
progressed.

To determine if three-dimensional effects were important in the sound generation
process and to measure the sound beneath larger breaking waves a series of experiments
was conducted in a large multi-paddle wave basin. Three-dimensional breaking waves
were generated and the sound produced by breaking was measured in the frequency
range from 10 Hz to 20 kHz. The observed sound spectra showed significant increases in
level across the entire bandwidth from 10 Hz to 20 kHz and the spectra sloped at -5 to -6
dB per octave at frequencies greater than 1 kHz. The mean square acoustic pressure in
the frequency band from 10 Hz to 150 Hz correlated with the wave amplitude similar to
the results obtained in the two-dimensional breaking experiments. Large amplitude low
frequency spectral peaks were observed approximately 0.75 s after the initial impact of
the plunging crests.

It was postulated that the low frequency signals observed some time after the
initial impact of the plunging crests for both the two and three-dimensional breakers were
caused by the collective oscillation of bubble clouds. Void fraction measurements taken
by Eric Lamarre were available for five breaking events and therefore the average sound
speed inside the bubble clouds and their radii were known. Using this information the
resonant frequencies of a two-dimensional cylindrical bubble cloud of equal radius and
sound speed were calculated. The frequencies of the observed signals matched closely
with the calculated resonant frequencies of the first and second mode of the two-
dimensional cylindrical bubble cloud. The close agreement supports the hypothesis that
the low frequency signals were produced by the collective oscillation of bubble clouds.

In Chapter 4 a model of the sound produced by breaking waves is presented
which uses the sound radiated by a single bubble oscillating at its linear resonant
frequency and the bubble size distribution to estimate the sound spectrum. The model
generates a damped sinusiodal pulse for every bubble formed, as calculated from the
bubble size distribution. If the range to the receiver is known then the only unknown
parameters are e, the initial fractional amplitude of the bubble oscillation and L, the
dipole moment arm or twice the depth of the bubble below the free surface. It was found
that if the product exL is independent of the bubble radius the model reproduces the
shape and magnitude of the observed sound spectrum accurately. The success of the
model implies that it may be possible to calculate the bubble size distribution from the
sound spectrum. The model was validated using data from experiments where the
breaking events were small scale gently spilling waves (Medwin and Daniel, 1990).

Thesis Supervisor. W. Kendall Melville

Title: Professor of Civil Engineering
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Figure 1. 1 Frequency spectra of ambient noise in the ocean. (from 34
Wenz, 1962).

Figure 1.2 Spectrum level of ambient sound as a function of the 36
windspeed class from data gathered in the North Sea (from

Carey et al 1990).

Figure 1.3 An example of the sound spectrum level as a function of time 41 3
in three frequency bands measured beneath a breaking wave in
the ocean (from Farmer and Vagle, 1989). 3

Figure 1.4 Ambient sound spectrum level of a breaking wave at sea. The 42
spectra are plotted for three different time intervals during the
event. The upper spectrum represents the background sound
spectrum prior to breaking and is shown in the lower plots as a
dashed line. The lower two spectra correspond to times
during active breaking (from Farmer and Vagle, 1989).

Figure 1.5 Spectrograph of the sound generated by breaking ocean 44 I
waves. The grey scale indicates the spectral level above the

background f-2 spectrum. There is energy in the spectra down
to frequencies as low as 60 Hz. (from Vagle, 1989).

Figure 1.6 The pressure spectrum level of the sound as a function of time 45 3
sampled by an upward looking directional hydrophone
mounted on the ocean floor in 80 meters of water in five 2

kHz wide frequency bands from 10 kHz to 50 kHz (from
Crowther, 1988).

Figure 1.7 Typical sound pulse emitted by an oscillating air bubble 48

entrained by a gently spilling breaking wave in a laboratory
wave channel (from Medwin and Beaky, 1989).3

Figure 1.8 Typical sound pulse radiated by an oscillating air bubble 50
beneath a gently spilling breaking wave at sea (from I
Updegraff and Anderson, 1991).

Figure 1.9 Total damping constant for a 1 mm radius air bubble in water. 54I
0, marks the location of resonance (from Prosperetti, 1984).
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Figure 1.10 Theoretically predicted resonant frequencies of a spherical 56
and cylindrical bubble cloud as a function of the void
fraction and radius (from Carey et al, 1990).

Figure 1.11 Frequency of oscillation of substructures as a function of the 58
volume of water released from a cylinder. The large
symbols correspond to data from a large tank and the smaller
symbols to data from a smaller tank (from Kolaini et al
1991).

Figure 1.12 Modeled sound spectra of the noise generated by breaking 61
waves (from Crowther, 1988).

Figure 2.1 Schematic drawing of the wave channel and the arrangement 73
of the experimental equipment.

Figure 2.2 (a) The amplitude transfer function of the wavemaker system 74
H(f) (cm/volt) as a function of frequency f (Hz). (b) The
phase transfer function 0() (radians) as a function of the
frequency f (Hz).

Figure 2.3 The upper plot is a typical frequency response of a B&K 80
model 8105 spherical hydrophone. The lower plot is the
typical frequency response of a B&K model 2635 charge
amplifier. The curve marked acceleration is for the mode of
operation used in these experiments.

Figure 2.4 The background ambient noise spectrum in the wave channel 84

G(f) in dB re 1 giPa 2/1-z.

Figure 2.5 The radar calibration data, received power P, in volts2 as a 88
function of a/R4, a is the radar cross section in m2 and R is
the range in m.

Figure 2.6 The surface displacement variance r12 normalized bythe 90
reference upstream surface displacement variance 1o2

plotted versus the dimensionless distance along the wave
channel, x is the distance along the channel measured from
the mean position of the wave paddle, xb is the theoretical
focal point and k, is the wavenumber of the wave packet

center component. Data is for wave packet PI: V, S=0.226;
0, S=0.254; 0, S--0.263.
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Figure 2.7 The surface .. splacement variance 112 normalized bythe 91
reference upstream surface displacement variance 1.02

plotted versus the dimensionless distance along the wave
channel, x is the distance along the channel measured from
the mean position of the wave paddle, xb is the theoretical
focal point and k, is the wavenumber of the wave packet
center component. Data is for wave packet P2: V, S=0.221;
0, S--0.244; 0, S--0.312.

Figure 2.8 The surface displacement variance i12 normalized bythe 92
reference upstream surface displacement variance T"1o2I

plotted versus the dimensionless distance along the wave
channel, x is the distance along the channel measured from 3
the mean position of the wave paddle, xb is the theoretical
focal point and k, is the wavenumber of the wave packet
center component. Data is for wave packet P3: V, S=0.218; l
0, S--0.240; 0, S--0.320.

Figure 2.9 The fractional dissipation of wave packet energy as a function 93I
of the slope parameter S: 0, PI; 0, P2; A, P3. The variability
of the data was typically less than the symbol size. 3

Figure 2.10 (a) Time series of the radar signal band pass filtered from 1- 95
250 Hz for packet P, with S = 0.254. (b) Power spectrum of i
time series in (a).

Figure 2.11 Radar Doppler spectra at various x-locations for packet P, 96 1
with S = 0.254, the radar time series were bar. pass filtered
from 1-250 Hz.

Figure 2.12 Bottom trace is a hydrophone time series band pass filtered 97
in the range 500 Hz-10 kHz, upper traces are radar time
series at various x-locations, band pass filtered in the range
50-250 Hz, for packet P1 with S = 0.254. The V mark the
times corresponding to the photographs in figure 2.13.

Figure 2.13 Photographs of a breaking wave matching the data in figure 99 i
2.12. Each photograph corresponds to one radar time series
and the time the photograph was taken is marked in figure
2.12 with a V above the matching radar time series.

10



I
I

Figure 2.14 (a) Time averaged radar cross-section as a function of x. (b) 102
Peak frequency (Hz) of the radar Doppler spectrum as a
function of x. 0, PI, S = 0.254; *, P3, S= 0.385; -o and -
* - on (b) denote the center component phase speeds for P,
and P3 respectively. Each data point is averaged from 3 runs
at each location; radar data were band pass filtered in the
range 50-250 Hz. The typical variability of the data between

runs is shown by the scatter bars.

Figure 2.15 Vertical eigenfunction shapes; m is the vertical mode 104

number.

Figure 2.16 Horizontal eigenfunction shapes; n is the horizontal mode 105
number.

Figure 2.17 Upper curve is the acoustic spectrum for packet P, with S = 107
0.254; lower curve is the spectrum of the background noise.3 A, mark locations of the cutoff frequencies.

Figure 2.18 Coherence y-. 2(f) of two hydrophone signals, S = 0.263 and 1093 the separation distance between the hydrophones Ax = 1.15
m.

Figure 2.19 Phase spectrum 0x,(f) of two hydrophone signals, S = 0.263 110
and the separation distance between the hydrophones Ax =

1.15 m.

Figure 2.20 Solid curves show equation 2.23, the theoretical values for 112
the group velocities of the acoustic modes in the wave
channel; 0, estimates of the group

3 Figure 2.21 Mean square acoustic pressure as a function of x. All data 113

are for P,: 0, S = 0.286; 0, S = 0.274; A, S = 0.263; A, S
= 0.254; C, S = 0.249; m, S = 0.247; V, S = 0.244; V, S -I0.241; 0, S = 0.237; *, S = 0.226. Each data point is the
average of 5 runs and the typical variability of the data3 between runs is shown by the scatter bars.

Figure 2.22 Dimensionless radar cross-section ak,2 as a function of the 116
slope parameter S: o,1 P; 0,P 2; P3.
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Figure 2.23 Dimensionless mean square acoustic pressure Pd as a 117
function of the slope parameter, S: 0, PI; 0, P2; A, P3.

Figure 2.24 Correlation between the dimensionless radar cross-section 118
kc 2 and the dimensionless mean square acoustic pressure Pd:
0, P; @, P2; A, P3-

Figure 2.25 Correlation of the dimensionless radar cross-section o1c2 119
with the fractional dissipation D. For ak,2 > 0.15 the data
are independent of D and fall within the range marked I--.
o, PI; *, P; A, P3 I

Figure 2.26 Correlation of the dimensionless mean square acoustic 121
pressure Pd with the fractional dissipation D. For Pd > 108 I
the data are independent of D and fall within the range
markedHI. 0, P; 0, P2; A, P3.

Figure 2.27 Correlation of the dimensionless radar cross-section okY2 and 122
the dimensionless hydrophone signal duration T,. 0, PI;@, 0
P2; A, P3.

Figure 2.28 Correlation of the dimensionless mean square acoustic 123 3
pressure Pd with the dimensionless hydrophone signal
duration T. 0, PI; *, P2; A, P3. 1

Figure 2.29 Variation of the bandwidth with x, the distance along the 125
channel. 0, PI, S = 0.254. Data correspond to the spectra in
figure 2.11.

Figure 2.30 (a) Variation of p in the wave channel with the transverse 128 1
coordinate, z. (b) Variation of p2 in the wave channel with
the vertical coordinate, y.

Figure 2.31 The mean square acoustic pressure, p2 measured upstream 130
and downstream of the breaking location. Theoretical
breaking location is at (X-Xb)/k, = 0.

Figure 2.32 Correlation between the estimated radiated acoustic energy 131 3
E. scaled by (k~h)- 2 and the energy dissipated by the breaking
wave EL. o 1 ; o, P2; A, P3.
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Figure 3.1 Schematic drawing of an elevation view (top) and plan view 134
(bottom) of the 25 m x 0.76 m x 0.60 m wave channel at MIT.
The configuration of the experimental equipment is also
illustrated.

Figure 3.2 The upper plot is the amplitude transfer function H(f) 135

(cm/volt) for the 25 m x 0.76 m x 0.60 m wave channel as a
function of frequency, f (Hz). The lower plot is the phase
transfer function 0(f) (radians) as a function of frequency, f
(Hz) (E. Lamarre, 1991).

Figure 3.3 A plot of the typical frequency response of an 1TC 1089E 137

hydrophone.

Figure 3.4 The upper plot is a typical frequency response of a Shure 141
SM81 microphone. The curve labelled flat corresponds to the
setting used in these experiments. The lower plots are typical
polar plots of the directional characteristics of a SM81
microphone at various frequencies.

Figure 3.5 The fractional dissipation D as a function of the wave slope 144
parameter, S. 0, WI; 1  W2; V, W3.

Figure 3.6 The frequency spectrum of wave packet W1 . The units of the 145
spectral density are arbitrary. x marks the location of the
centroid of the spectrum.

Figure 3.7 The fractional dissipation D scaled by kd the wavenumber of 147
the centroidal component and the water depth, h as a function
of the slope parameter, S. 0, W; *I W2;V, W3"

Figure 3.8 The upper plot is a time series of the upstream hydrophone 148

signal band pass filtered from 20 Hz to 10 kHz for packet W2
with S = 0.544. The lower plot is a spectrograph of the time
series in the upper plot. 48 spectra with a bandwidth
resolution of 39 Hz are shown plotted. They were computed
by dividing the time series into 144-512 point segments which
overlapped 171 points, windowing with a Blackman-Harris
window and computing FFT's which were averaged over
every 3 segments. Each color corresponds to a 5 dB re 1 j±Pa2

increment in spectral level.
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Figure 3.9 The upper plot is a time series of a microphone signal band 149 U
pass filtered from 20 Hz to 10 kHz for packet W2 with S =
0.544. The lower plot is a spectrograph of the time series in 3
the upper plot. 48 spectra with a bandwidth resolution of 39
Hz are shown plotted. They were computed by dividing the
time series into 144-512 point segments which overlapped 171
points, windowing with a Blackman-Harris window and
computing FFTs which were averaged over every 3 segments.
Each color corresponds to a 5 dB re I p.Pa2 increment in
spectral level.

Figure 3.10 Frequency spectra of the signal from the upstream 152
hydrophone for wave packet W, with slope, S increasing
from 0.288 to 0.512 in 0.032 increments. Pressure spectrum
level, PSL in dB re 1 i±Pa2/Hz. Each spectrum is the average
of 5 repeats and was smoothed in the frequency domain with 3
a 9 point Bartlett window to produce an estimate with 80
degrees of freedom. 3

Figure 3.11 Frequency spectra of the signal from the downstream 153
hydrophone for wave packet W1 with slope, S increasing

from 0.288 to 0.512 in 0.032 increments. Pressure
spectrum level, PSL in dB re 1 xPa2/Hz.Each spectrum is the
average of 5 repeats and was smoothed in the frequency

domain with a 9 point Bartlett window to produce an
estimate with 80 degrees of freedom. 3

Figure 3.12 Frequency spectra of the signal from the microphone for 154
wave packet W1 with slope, S increasing from 0.288 to 0.512 3
in 0.032 increments. Pressure spectrum level, PSL in dB re
1 I Pa2/Hz. Each spectrum is the average of 5 repeats and
was smoothed in the frequency domain with a 9 point I
Bartlett window to produce an estimate with 80 degrees of
freedom. 3

i
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Figure 3.13 The pressure spectrum level PSL (dB re l .Pa2/Hz) of the 157
signal from the upstream hydrophone in two frequency bands
as a function of time for packet W1. Each data point is the
average of 5 repeats of the event. (a) S = 0.288 (b) S =
0.320 (c) S = 0.352 (d) S = 0.384 (e) S = 0.416 (f) S =
0.448 (g) S = 0.480 (h) S = 0.512. 0, 2OHz-I kHz, *, 1-10
kHz.

Figure 3.14 The pressure spectrum level PSL (dB re lJ.Pa2/Hz) of the 158
signal from the downstream hydrophone in two frequency
bands as a function of time for packet W2. Each data point is
the average of 5 repeats of the event. (a) S = 0.288 (b) S =
0.320 (c) S = 0.352 (d) S = 0.384 (e) S = 0.416 (f) S =
0.448 (g) S = 0.480 (h) S = 0.512. 0, 20Hz-1 kHz, 0, 1-10
kHz.

Figure 3.15 The pressure spectrum level PSL (dB re lpPa2/Hz) of the 159
signal from the microphone in two frequency bands as a
function of time for packet W3. Each data point is the
average of 5 repeats of the event. (a) S = 0.288 (b) S =

0.320 (c) S = 0.352 (d) S = 0.384 (e) S = 0.416 (f) S =

0.448 (g) S = 0.480 (h) S = 0.512. 0, 20Hz-I kHz; 0, 1-10
kHz.

Figure 3.16 The mean square acoustic pressure p2 (Pa 2) of the signal 160
from the upstream hydrophone calculated over the entire
signal duration in two frequency bands as a function of the
slope parameter S. The upper plot is for the frequency band

0-i kHz and the lower plot for the band 1-10 kHz. Each data
point is the average of 5 repeats of the measurement and the
error bars indicate the 95% confidence limits. 0, WI; 0, W2;
V, W3.

Figure 3.17 The mean square acoustic pressure p (Pa2) of the signal 161
from the downstream hydrophone calculated over the entire
signal duration in two frequency bands as a function of the
slope parameter S. The upper plot is for the frequency band
0-1 kHz and the lower plot for the band 1-10 kHz. Each data
point is the average of 5 repeats of the measurement and the
error bars indicate the 95% confidence limits. 0, W I; *, W2;
V, W 3"
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Figure 3.18 The mean square acoustic pressure p2 (Pa 2) of the signal 162

from the microphone calculated over the entire signal
duration in two frequency bands as a function of the slope
parameter S. The upper plot is for the frequency band 0-1
kHz and the lower plot for the band 1-10 kHz. Each data
point is the average of 5 repeats of the measurement and the

error bars indicate the 95% confidence limits. 0, WI; 0, W2;
V,W 3 " I

Figure 3.19 The mean square acoustic pressure p2 (Pa 2) of the signal 164

from the upstream hydrophone calculated over the entire
signal duration in two frequency bands as a function of the
fractional dissipation D. The upper plot is for the frequency
band 0-1 kHz and the lower plot for the band 1-10 kHz.
Each data point is the average of 5 repeats of the
measurement and the error bars indicate the 95% confidence
limits. 0, WI; 0, W 2; V, W3" I

Figure 3.20 The mean square acoustic pressure p2 (Pa 2) of the signal 165
from the downstream hydrophone calculated over the entire
signal duration in two frequency bands as a function of the
fractional dissipation D. The upper plot is for the frequency3
band 0-1 kHz and the lower plot for the band 1-10 kHz.
Each data point is the average of 5 repeats of the
measurement and the error bars indicate the 95% confidence
limits. 0, WI; I, W2;V W3"

Figure 3.21 The mean square acoustic pressure p2 (Pa2) of the signal 166

from the microphone calculated over the entire signal
duration in two frequency bands as a function of the I
fractional dissipation D. The upper plot is for the frequency

band 0-1 kHz and the lower plot for the band 1-10 kHz.
Each data point is the average of 5 repeats of the
measurement and the error bars indicate the 95% confidence
limits. 0, WI; 0, W 2; V, W3"

Figure 3.22 A drawing of a plan (top plot) and elevation view (bottom 168
plot) of the three-dimensional wave channel at the Offshore
Technology Research Center at Texas A&M University. The
layout of some of the experimental equipment is also shown.
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Figure 3.23 A schematic of the experimental equipment set-up and the 169

wavemaker control system.

Figure 3.24 A schematic of the three signal conditioning configurations 173
I used in the three-dimensional breaking experiments.

Figure 3.25 Time series of the surface displacement Tl(t) (cm) for a 174
three-dimensional breaking wave with a gain, A = 0.70,
along the centerline of the channel at six locations. The
wave paddles are located at x = 0 m and breaking occurs at
18.6 m: (a) 12.5 m (b) 15.5 m (c) 18.6 m (d) 21.6 m (e) 24.7
m (f) 27.7 m.

Figure 3.26 Frequency spectra of the surface displacement data plotted in 176
figure 3.25. The dotted line in figure (b) to (f) is the
reference upstream spectrum at 18.6 m: (a) 12.5 m (b) 15.5
m (c) 18.6 m (d) 21.6 m (e) 24.7 m (f) 27.7 m.

Figure 3.27 Contour plot of the surface displacement variance (cm 2) 177
averaged over the entire signal duration. The x axis is the
distance along the channel from the wave paddles and the y
axis is the distance across the channel. y = 0 is the centerline
of the channel and the wave paddles are located at x = 0 in.

IWaves propagated from left to right in this coordinate
system.

Figure 3.28 The upper plot is a time series of the acoustic pressure from 180
the downstream hydrophone for a three-dimensional
breaking wave with gain, A = 0.70. The signal was
conditioned with set-up I shown in figure 3.24. The lower
plot is a spectrograph of the time series in the upper plot. 52Ispectra with a bandwidth resolution of 78 Hz are plotted.
They were computed by dividing the time series into 416-
512 point segments which overlapped 128 points, windowing
with a Blackman-Harris window and computing FFTs which
were averaged over every 8 segments. Each color

[I corresponds to a 5 dB re 1 ,.Pa2 increment in spectral level.
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Figure 3.29 The upper plot is a time series of the acoustic pressure from 181
the upstream hydrophone for a three-dimensional breaking
wave with gain, A = 0.70. The signal was conditioned with I
set-up I shown in figure 3.24. The lower plot is a
spectrograph of the time series in the upper plot. 52 spectra
with a bandwidth resolution of 78 Hz are plotted. They were
computed by dividing the time series into 416-512 point
segments which overlapped 128 points, windowing with a I
Blackman-Harris window and computing FFTs which were
averaged over every 8 segments. Each color corresponds to
a 5 dB re 1 jiPa2 increment in spectral level.

Figure 3.30 The upper plot is a time series of the acoustic pressure from 182
the microphone for a three-dimensional breaking wave with
gain, A = 0.70. The signal was conditioned with set-up I
shown in figure 3.24. The lower plot is a spectrograph of the I
time series in the upper plot. 52 spectra with a bandwidth
resolution of 78 Hz are plotted. They were computed by
dividing the time series into 416-512 point segments which
overlapped 128 points, windowing with a Blackman-Harris
window and computing FFTs which were averaged over3
every 8 segments. Each color corresponds to a 5 dB re 1
.Pa2 increment in spectral level. I

Figure 3.31 Frequency spectra of the signal from the downstream 184
hydrophone conditioned using set-up I (see figure 3.24) for i
the three-dimensional breaking events with gains, A = 0.24,
0.40,0.475, 0.55, 0.675 and 0.70. Pressure spectrum level
PSL in dB re 1 g.Pa 2/Hz. Each spectrum was averaged over
5 repeats of the same event and was then smoothed with a 9
point Bartlett window to produce an estimate with 80 degrees
of freedom.

II
I
I

18 I



Figure 3.32 Frequency spectra of the signal from the upstream 185
hydrophone conditioned using set-up I (see figure 3.24) for
the three-dimensional breaking events with gains, A = 0.24,
0.40,0.475, 0.55, 0.675 and 0.70. Pressure spectrum level
PSL in dB re 1 pPa2/Hz. Each spectrum was averaged over
5 repeats of the same event and was then smoothed with a 9
point Bartlett window to produce an estimate with 80 degrees

of freedom.

Figure 3.33 Frequency spectra of the signal from the microphone 186
conditioned using set-up I (see figure 3.24) for the three-
dimensional breaking events with gains, A = 0.24, 0.40,
0.475, 0.55 , 0.675 and 0.70. Pressure spectrum level PSL in
dB re I ±iPa 2/Hz. Each spectrum was averaged over 5
repeats of the same event and was then smoothed with a 9
point Bartlett window to produce an estimate with 80 degrees
of freedom.

Figure 3.34 The pressure spectrum level PSL (dB re I Pa2/Hz) of the 189
signal from the downstream hydrophone as a function of
time in two frequency bands for the three-dimensional
breaking events. Each data point is the average of at least 3
repeats of the event. (a) A = 0.24 (b) A = 0.40 (c)
A = 0.475 (d) A = 0.55 (e) A = 0.625 (f) A = 0.70. 0,

1OHz-I kHz; 0, 1-20 kHz.

Figure 3.35 The pressure spectrum level PSL (dB re lpPa2/Hz) of the 190
signal from the upstream hydrophone as a function of time in
two frequency bands for the three-dimensional breaking
events. Each data point is the average of at least 3 repeats of
the event. (a) A = 0.24 (b) A = 0.40 (c) A = 0.475 (d) A =

0.55 (e) A = 0.625 (f) A = 0.70. 0, lOHz-1 kHz; @, 1-20
kHz.

Figure 3.36 The pressure spectrum level PSL (dB re l.LPa2/Hz) of the 191
signal from the microphone as a function of time in two
frequency bands for the three-dimensional breaking events.
Each data point is the average of at least 3 repeats of the
event. (a) A = 0.24 (b) A = 0.40 (c) A = 0.475 (d) A =

0.55 (e) A = 0.625 (f) A = 0.70. 0, 1OHz-I kHz; 0, 1-20
kHz.
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Figure 3.37 The pressure spectrum level PSL (dB re Ilp.Pa 2/Hz) of the 192
signal from the downstream hydrophone as a function of
time in two lower frequency bands for the three-dimensional
breaking events. Each data point is the average of at least 3
repeats of the event. (a) A = 0.24 (b) A = 0.40 (c)
A = 0.475 (d) A = 0.55 (e) A = 0.625 (f) A = 0.70. o, 10-
150 Hz; 0, 150-500 Hz.

Figure 3.38 The pressure spectrum level PSL (dB re Il.Pa2/IHz) of the 193
signal from the upstream hydrophone as a function of time in
two lower frequency bands for the three-dimensional
breaking events. Each data point is the average of at least 3
repeats of the event. (a) A = 0.24 (b) A = 0.40 (c)
A = 0.475 (d) A = 0.55 (e) A = 0.625 (f) A = 0.70. 0, 10-
150 Hz; 0, 150-500 -z.

Figure 3.39 The pressure spectrum level PSL (dB re lpPa2/Hz) of the 194
signal from the microphone as a function of time in two
lower frequency bands for the three-dimensional breaking
events. Each data point is the average of at least 3 repeats of
the event. (a) A = 0.24 (b) A = 0.40 (c) A = 0.475 (d) A = 1
0.55 (e) A = 0.625 (f) A = 0.70. 0, 10-150 Hz; 9, 150-500
Hz.

Figure 3.40 Mean square acoustic pressure p2 (Pa 2) of the two 196
hydrophone signals calculated over the entire signal duration

in two frequency bands plotted as a function of the gain A.
The data in the upper plot is for the frequency band 0-1 kHz
and the lower plot for 1-20 kHz. Each data point is the
average of at least 3 repeats of the same event and the error
bars indicate the 95% confidence limits of the data. o,
downstream hydrophone; 0, upstream hydrophone.

Figure 3.41 Mean square acoustic pressure p2 (Pa2) of the two 197
hydrophone signals calculated over the entire signal duration
in two lower frequency bands plotted as a function of the
gain A. The data in the upper plot is for the frequency band i
0- 150 Hz and the lower plot for 150-500 Hz. Each data
point is the average of at least 4 repeats of the same event

and the error bars indicate the 95% confidence limits of the
data. 0, downstream hydrophone; 0, upstream hydrophone.
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Figure 3.42 Mean square acoustic pressure p2 (Pa 2) of the microphone 198
signal calculated over the entire signal duration in two
frequency bands plotted as a function of the gain A. The
data in the upper plot is for the frequency band 0-1 kHz and
the lower plot for 1-20 kHz. Each data point is the average
of at least 5 repeats of the same event and the error bars
indicate the 95% confidence limits of the data.

Figure 3.43 Plan view of the whitecap generated by the three- 200
dimensional breaking event with A = 0.40. The time is
referenced to plot (a) for which t = 0 s (b) t = 0.2 s (c) t -
0.47 s (d) t = 0.67 s.

Figure 3.44 Plan view of the whitecap generated by the three- 201
dimensional breaking event with A = 0.475. The time is
referenced to plot (a) for which t = 0 s (b) t = 0.27 s (c) t =
0.53 s (d) t = 0.8 s.

Figure 3.45 Plan view of the whitecap generated by the three- 202
dimensional breaking event with A = 0.55. The time is
referenced to plot (a) for which t = 0 s (b) t = 0.27 s (c) t =
0.53 s (d) t = 0.8 s.

Figure 3.46 Plan view of the whitecap generated by the three- 203
dimensional breaking event with A = 0.625. The time is
referenced to plot (a) for which t = 0 s (b) t = 0.27 s (c) t =
0.7 s (d) t = 1.0 s.

Figure 3.47 Plan view of the whitecap generated by the three- 204
dimensional breaking event with A = 0.70. The time is
referenced to plot (a) for which t = 0 s (b) t = 0.27 s (c) t =
0.53 s (d) t = 0.8 s.

Figure 3.48 The integrated area (ft.2), defined as sum of the area of the 205
whitecap at the four times corresponding to the four frames
plotted in figures 3.43 to 3.47, for each breaking event and
the maximum area (ft.2), defined as the maximum whitecap
area observed for each breaking event, as a function of gain.
0, integrated area; 0, maximum area.
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Figure 3.49 The volume of air in the cylinder V (cm 3) formed by the 207
plunging wave crest versus the slope parameter for the 3
wave packets in the two-dimensional breaking experiments.0, WI; 0, W2; V, W3"

Figure 3.50 The fractional dissipation D as a function of the cylinder 208 1
volume V (cm 3). o, W,; 9, W2; V, W3 .

Figure 3.51 The mean square acoustic pressure p2 (Pa2) of the signal 210
from the upstream hydrophone calculated over the entire
signal duration in two frequency bands as a function of the
volume of the cylinder V (cm3). The upper plot is for the
frequency band 20 Hz-I kHz and the lower plot for the band
1-10 kHz. Each data point is the average of 5 repeats of the
measurement and the error bars indicate the 95% confidence
limits. 0, W; , W2; V, W3" I

Figure 3.52 The mean square acoustic pressure p2 (Pa2) of the signal 211
from the downstream hydrophone calculated over the entire
signal duration in two frequency bands as a function of the
volume of the cylinder V (cm 3). The upper plot is for the

frequency band 20 Hz-I kHz and the lower plot for the band
1-10 k/Hz. Each data point is the average of 5 repeats of the
measurement and the error bars indicate the 95% confidence
limits. o, W; *, W2;V, W3"

Figure 3.53 The mean square acoustic pressure p2 (Pa2) of the signal 212
from the microphone calculated over the entire signal
duration in two frequency bands as a function of the volume
of the cylinder V (cm 3). The upper plot is for the frequency
band 20 Hz-I kHz and the lower plot for the band 1-10 kHz.
Each data point is the average of 5 repeats of the
measurement and the error bars indicate the 95% confidence
limits. 0, WI; , W2;V, W3" 3

I
I
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Figure 3.54 Spectrographs of signals from the microphone (top plot) and 214
the upstream hydrophone (bottom plot) for the two-
dimensional breaking event packet W3 with S = 0.48. The
spectra were averaged over 5 repeats of the event and were
calculated for 32-2048 point segments overlapped by 512
points and windowed with a Blackman-Harris window. The
bandwidth resolution is 9.8 Hz. Each color corresponds to a
5 dB re 1 piPa2 increment in spectral level.

Figure 3.55 Spectrographs of signals from the microphone (top plot) and 215
the upstream hydrophone (bottom plot) for the two-
dimensional breaking event packet W, with S = 0.416. The
spectra were averaged over 5 repeats of the event and were
calculated for 32-2048 point segments overlapped by 512
points and windowed with a Blackman-Harris window. The
bandwidth resolution is 9.8 Hz. Each color corresponds to a
5 dB re 1 .Pa 2 increment in spectral level.

Figure 3.56 The characteristic frequency f ( Hz) of (a) the microphone 217
signal and (b) the hydrophone signal for the two-dimensional
breaking events plotted versus the slope parameter S. 0,

WI; 0, W2; V, W 3"

Figure 3.57 The characteristic frequency f (Hz) of (a) the microphone 218
signal and (b) the hydrophone signal for the two-dimensional
breaking events plotted versus the fractional dissipation, D.
o, W; 0, W2; V, W 3"

Figure 3.58 Frequency spectra (pressure spectrum level PSL in dB re 1 219
ILPa 2fHz) of the signal from the downstream hydrophone for
the three-dimensional breaking events. The gain A = 0.24,
0.40, 0.475, 0.55, 0.625 and 0.70. The spectra were
computed from data conditioned using set-up HI and
decimated to a sampling rate of 1 kHz. The data was divided
into 17-256 point segments, windowed using a Blackman-
Harris window, overlapped by 64 points and averaged over 5
repeats of the events. The estimated spectra have 10 degrees
of freedom and a bandwidth resolution of 3.9 Hz. V mark
the shifting low frequency spectral peaks.
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Figure 3.59 A series of photographs showing the formation and 222 i
subsequent break-up of the cylinder of air formed by a
plunging breaker for wave packet W2 with S = 0.544. Frame
(23) t = 0.322 s, prior to the impact of the plunging crest, the
free surface is visible as a horizontal line across the middle
of the photograph and the plunging wave crest is visible I
above the free surface. Frame (24) t = 0.465 s, the crest has
just impacted the free surface. Frame (25) t = 0.532 s, the i
smooth-walled cylinder of air is partially visible, the lower
edge of the cylinder is the horizontal line slightly above the
centerline of the frame. Frame (26) t = 0.599 s, the smooth- i
walled cylinder fills the upper half of the frame. Frame (27)
t = 0.665 s, the cylinder is becoming unstable, waves can be
seen forming along the lower portion of the cylinder. Frame
(28) t = 0.699 s (29) t = 0.732 s (30) t = 0.766 s, the break-up
of the cylinder into a cloud of small bubbles continues, the
waves visible in frame (27) develop into periodic bubble
cloud substructures most cleu'ly visibl, in frame (29).
Frame (31) t = 0.799 s (32) t = C 866 s, the structure of the
bubble cloud bec-me , finer as the bubbles break-up into
progressively smaller sizes. 5

Figure 3.60 A series of photographs showing a view from the side of the 224
cylinder formation for packet W2 with S = 0.544. Frame i
(34) t = 0.266 s, the wave crest has just begun to plunge
forward. Frame (35) t = 0.333 s, the crest has curled over
and the cylinder is partially formed, this frame matches the
time of frame (23) in figure 3.59. Frame (36) t = 0.466 s, the
wave crest has just impacted the free surface and the cylinder i
is fully formed, this frame matches the time of frame (24) in
figure 3.59.

Figu-e 3.61 Geometry of the problem of an oscillating air cylinder 226
located close to a pressure release surface.

2
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Figure 3.62 The resonant frequency f, (Hz) of a cylinder of air 231
oscillating near a pressure release surface as given by
equation 3.19, evaluated for various values of L/a., the ratio
of twice the distance between the cylinder center and the free
surface to the cylinder radius, plotted as a function of the
cylinder radius a (m).

Figure 3.63 The resonant frequency f, (Hz) a cylinder of air oscillating 232
near a pressure release surface as given by equation 3.19
plotted as a function of the cylinder radius a. (m) compared

to the observed oscillation frequencies and radii of the
cylinders of air produced by the two-dimensional breaking
waves. 0, WI; e, W2; VI W3"

Figure 3.64 Trace of the geometry of the free surface and the air cylinder 234
for packet W2 with S = 0.544. The cross hatched region is
the measured mass.

- Figure 3.65 Observations of the oscillation frequencies and radii of the 236
cylinders of air produced by the two-dimensional breaking3waves compared to equation 3.20. 0, WI; *, W2; V, W3"

Figure 3.66 Typical plot of the magnitude of the resonant amplification 239
- factor A. as a function of frequency f (Hz) for the first three

modes for which n = 0, 1 and 2.

I Figure 3.67 Theoretical predictions of the resonant frequencies f (Hz) of 244
the first 4 modes (n = 0, 1, 2 and 3) of a cylindrical bubble

Scloud as a function of time for the two-dimensional packet
W2 with S = 0.384.

3 Figure 3.68 Theoretical predictions of the resonant frequencies f (Hz) of 245
the first 4 modes (n = 0, 1, 2 and 3) of a cylindrical bubble
cloud as a function of time for the two-dimensional packet
W2 with S = 0.448.

Figure 3.69 Theoretical predictions of the resonant frequencies f (Hz) of 246
the first 4 modes (n = 0, 1, 2 and 3) of a cylindrical bubble
cloud as a function of time for the two-dimensional packet
W2 with S = 0.544.
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Figure 3.70 Theoretical predictions of the resonant frequencies f (Hz) of 247 1
the first 4 modes (n = 0, 1, 2 and 3) of a cylindrical bubble
cloud as a function of time for the three-dimensional packet
with gain A = 0.40.

Figure 3.71 Theoretical predictions of the resonant frequencies f (Hz) of 248 3
the first 4 modes (n = 0, 1, 2 and 3) of a cylindrical bubble
cloud as a function of time for the three-dimensional packet

with gain A = 0.70.

Figure 3.72 Spectrograph of the signal from the upstream hydrophone 249

for the two-dimensional breaking event packet W2 with S =
0.384. The theoretical resonant frequencies of a cylindrical
bubble cloud computed using the void fraction data are 3
marked with A for mode 0 in the upper plot and for mode 1
in the lower plot. The spectra were averaged over 5 repeats

of the event and were calculated for 32-2048 point segments
overlapped by 512 points and windowed with a Blackman-
Harris window. The bandwidth resolution is 9.8 Hz. Each 3
color corresponds to a 5 dB re 1 j±Pa 2 increment in spectral
level. I

Figure 3.73 Spectrograph of the signal from the microphone for the two- 250
dimensional breaking event packet W2 with S = 0.384. The

theoretical resonant frequencies of a cylindrical bubble cloud
computed using the void fraction data are marked with A for
mode 0 in the upper plot and for mode 1 in the lower plot.

The spectra were averaged over 5 repeats of the event and
were calculated for 32-2048 point segments overlapped by

512 points and windowed with a Blackman-Harris window.
The bandwidth resolution is 9.8 Hz. Each color corresponds

to a 5 dB re 1 g±Pa2 increment in spectral level.

I
I
I
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Figure 3.74 Spectrograph of the signal from the downstream hydrophone 253
for the three-dimensional breaking event with A = 0.70. The
theoretical resonant frequencies of a cylindrical bubble cloud
computed using the void fraction data are marked with A for
mode 0 in the upper plot and for mode 1 in the lower plot.
The spectra were averaged over 5 repeats of the event and
were calculated for 52-4096 point segments overlapped by
1024 points and windowed with a Blackman-Harris window.
The bandwidth resolution is 9.8 Hz. Each color corresponds
to a 5 or 3 dB re I IPa2 increment in spectral level.

Figure 3.75 Spectrograph of the signal from the upstream hydrophone 254
for the three-dimensional breaking event with A = 0.40. The
theoretical resonant frequencies of a cylindrical bubble cloud
computed using the void fraction data are marked with A for
mode 0 in the upper plot and for mode 1 in the lower plot.
The spectra were averaged over 5 repeats of the event and
were calculated for 52-4096 point segments overlapped by
1024 points and windowed with a Blackman-Harris window.
The bandwidth resolution is 9.8 Hz. Each color corresponds
to a 5 or 3 dB re 1 pPa2 increment in spectral level.

Figure 3.76 Time series of the sound spectrum level, SSL (same as PSL) 259
in dB re 1 j±Pa2/Hz in three frequency bands centered at 1
kHz, 10 kHz and 18 kHz when an ocean surface wave is
breaking overhead of the sampling hydrophone (Farmer and
Vagle, 1989).

Figure 4.1 Peak pressures (x) (Pa) of the bubble oscillation pulses 264
observed by Updegraff and Anderson (1991) as a function of
the oscillation frequency. The * symbols joined by the solid
line are the mean of the peak pressures in a frequency
bandwidth 1 kHz wide centered at the symbol locations.

Figure 4.2 N(a) the number of bubbles per wave in the radius interval 265
from (a, + a,-,)/2 to (a,+, + ai)/2 centered at a, (Medwin and
Daniel, 1990).

Figure 4.3 Measured sound power spectrum averaged over six gently 267
spilling waves (Medwin and Daniel, 1990).
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Figure 4.4 Sketch of the geometry of the problem and definitions of 268 1
some of the parameters.

Figure 4.5 The power spectrum of an individual bubble pulse g(wO;a,) as 270 i
given by equation 4.4.

Figure 4.6 A comparison of the sound spectrum calculated using the 273
analytic spectrum model, plotted with the bold line, and the
Monte Carlo model, plotted with the thin line.

Figure 4.7 The bold line is the mean spectrum averaged from ten spectra 274
generated by the analytic spectrum model. The upper and
lower lines are the 95% confidence limits.

Figure 4.8 Sketch of the formation of bubbles at the toe of the spilling 276
region in a gently spilling wave.

Figure 4.9 Comparison of a sound spectrum from the Monte Carlo model 277
with e = 0.005-0.025 and L = 0.01-0.03 m and the measured
sound spectrum of Medwin and Daniel (1990), plotted with a I
bold line. The bars indicate the 95% confidence limits of the
modeled spectrum. 3

Figure 4.10 Comparison of a sound spectrum from the analytic spectrum 278
model with e = 0.015 and L = 0.02 m and the measured

sound spectrum of Medwin and Daniel (1990), plotted with a
bold line. The bars indicate the 95% confidence limits of the
modeled spectrum.
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List of Tale

Table 2.1 Computer programs used to obtain the transfer function of the 75
wave maker system. Listings of these programs can be found in
appendix A.

Table 2.2 Computer programs used to generate the wave packets. See 77
appendix A for complete listings.

Table 2.3 Wave packet characteristics; Af/f, = 0.73 and xbk = 28.3 for all 78
wave packets

Table 2.4 Specifications of a B&K 8105 spherical hydrophone. 81

Table 2.5 Specifications of a B&K 2635 charge amplifier. 82

Table 2.6 Kustom Electronics radar model MR7/9 characteristics. 85

Table 2.7 Acoustic modes and their theoretical cutoff frequencies 106

Table 3.1 Wave packet characteristics; Af/f, = 1.0 and xbk, = 24.6 for all 136
wave packets.

Table 3.2 The frequency response and output characteristics of the 138
Wilcoxon model AM-5 amplifiers.

Table 3.3 Specifications of 844P8B-5 low pass and the 874P8B-3 highpass 139
filters

Table 3.4 The specifications of the Symetrix model SX202 microphone 142
pre-amplifier.

Table 3.5 Acoustic modes and their theoretical cut-off frequencies for the 150
0.76 m wide 0.6 m deep wave tank.

Table 3.6 Results from analysis of traces of the free surface geometry and 235
cylinder. The measured mass was obtained from the traces, the
theoretical mass from equation 3.12, with /a0 = 2, and the
correction factor equals N(theoretical mass / measured mass).

Table 3.7 The maximum mean void fraction and maximum bubble cloud 241
radius for the five breaking events for which void fraction
measurements are available.
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Table 3.8 A comparison of the predicted resonant frequency of the lowest 242
mode of a two-dimensional bubble cloud, f. (calculated from the
magnitude of A. given by equation 3.22) and the predicted
resonant frequency of the lowest mode of a spherical bubble
cloud of equal volume. fo, (calculated from equation 3.24). a. is
the radius of the observed bubble cloud, r. is the radius of a
spherical bubble cloud of equal volume and a is the mean void
fraction of the observed bubble cloud. 3
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Chanter 1" Inraduin n ULerature Review

Deep-water breaking waves occur on the ocean surface in all but the lightest

winds. Breaking occurs over a wide range of scales, from gently spilling waves only

centimeters long to energetic plunging breakers tens of meters in length. Plunging

breakers are generally steep, very energetic and are characterized by a wave crest which

plunges forward and impacts the free surface ahead of the wave. Spilling breakers are

less energetic events in which the wave begins to break at the crest and forms a whitecap

which rides down the forward face of the wave (Longuet-Higgins and Turner, 1974).

Breaking is considered to be the dominant mechanism responsible for limiting the

height of waves and for dissipating energy (Phillips, 1977). Breaking waves are believed

to be the primary mechanism for the transfer of momentum from the wind to surface

currents (Longuet-Higgins, 1969). Wave breaking is known to enhance the transfer of

gas across the air-sea interface and it may play an important role in the transfer of

anthropogenic CO2 from the atmosphere to the oceans (Watson et al, 1991). The

presence of breaking waves on the ocean surface has been shown to enhance the

scattering of microwaves and breaking waves are believed to be the dominant source of

sea surface sound in the ocean at frequencies greater than 500 Hz (Kwoh and Lake, 1981,

Melville et al, 1988, Farmer and Vagle, 1988 and Jessup et al, 1990).

Breaking clearly has a great influence on the dynamics of the atmosphere and

oceans. Detecting breaking waves on the ocean surface is possible using remote sensing

techniques such as microwave backscatter and passive acoustics (Keller et al, 1981,

Jessup et al, 1990 Crowther, 1988 and Fanner and Vagle, 1988). These techniques

provide valuable information on the statistics and kinematics of breaking waves but they

have not yet proven effective for studying the dynamics of breaking. A common

measure of breaking is the whitecap coverage, which is defined as the fraction of the sea
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I
surface which is covered with whitecaps. Whitecap coverage has been correlated with I
wind speed and atmospheric stability but such correlations are of limited usefulness

because they are indirectly related to the dynamics of breaking (Monahan and I
O'Muirheartaigh, 1986). Attempts have been made to detect breaking waves using a n

jump meter (Longuet-Higgins and Smith, 1983). The jump meter identified breaking by

using the amplitude of the time derivative of the surface displacement elevation as I
measured by a wave gauge. This technique proved to be unreliable because it depended

on the assumption that all waves with local slopes greater than a critical value were about i
to break or were breaking. At the present time there is no proven method for

quantitatively studying the dynamics of breaking waves in the ocean.

Much of our current understanding of the dynamics of breaking waves has been I
gained by studying them in the laboratory. In the laboratory it is possible to control and

systematically vary the important dynamical variables associated with breaking; the wave

slope and energy dissipation. It was first shown by Melville and Rapp (1985) that the

amount of energy dissipated by breaking correlated with the pre-breaking wave slope. U

They found that up to 40% of the pre-breaking wave energy could be dissipated by a 3
steep plunging breaker. Melville et al (1988) observed that the acoustic energy radiated

and the microwave power backscattered by breaking waves in the laboratory correlated 3
with the wave slope and the energy dissipation This was the first conclusive evidence

that measurements of the sound and backscattered microwave power produced by i
breaking waves could be used to quantitatively study the dynamics of breaking waves.

The laboratory experiments described in this thesis were motivated by the fact

that these preliminary experiments described above demonstrated that the simple I
averaged acoustic and microwave measurements were correlated with the dynamics of

breaking. Prior to these measurements it was known that the microwave power

backscattered from the ocean surface and the oceanic ambient sound levels varied as a

function of the windspeed (Wenz, 1962 and Ulaby, Moore and Fung, 1986, p.859).
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Correlations of the backscattered microwave power and ambient sound levels with the

windspeed are useful tools if the goal is to use remote sensing to estimate the windspeed

over the oceans. However, if the goal is to use these remote sensing techniques to obtain

a deeper understanding of the dynamics of breaking waves and their role in air-sea

interaction then more detailed studies which relate the dynamics of breaking directly to

the sound levels and backscattered microwave power are required.

L Ambient Sound M surements

Ambient sound in the ocean has been a subject of interest to oceanographers for

many years. In 1948 Knudsen et al found that spectral levels of "ambient noise from

water motion" decreased with increasing frequency at a rate of 5 to 6 dB per octr.ve in the

frequency range 100 Hz to 25 kHz and that the sound levels increased with increasing

windspeeds. Breaking waves at the sea surface were cited as a possible source of this

sound. In 1962 Wenz did an extensive review of the available oceanic ambient sound

data and found the same -5 to -6 dB spectral slope as Knudsen et al (1948) had observed.

Shown in figure 1.1 is a composite plot of his ambient sound spectra. He also found that

the sound spectrum levels increased with windspeed. From 500 Hz to 20 kHz the wind

dependence was described by the following empirical rule; with each doubling of the

windspeed from 2.5 to 40 knots the spectrum levels increase by 5dB. Wenz concluded

that this data supported the hypothesis that oscillating gas bubbles, cavitation and spray at

the sea surface were the sources of sound in the 100 Hz to 20 kHz frequency range.

More recently Kerman et al (1983) using data from previous studies ( Pigott

1964, Crouch and Burt 1971, Cato 1976, Shaw et al 1978 and Shooter and Gentry 1981)

found that the ambient sound intensity was correlated with the windspeed but that the

slope of the correlation changed at a windspeed of approximately 5 m/s. For windspeed
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Figure 1. 1 Frequency spectra of ambient noise in the ocean. (from Wenz, 1962).

34



U < 5 m/s the sound intensity was proportional to U3 and for U > 5 m/s it was

proportional to U2 . Kerman (1984) attributes this change in slope to either a change in a

single mechanism associated with breaking waves or to two different mechanisms being

responsible for the generation of the sound. Farmer and Lemon (1984) correlated the

NSL (noise spectrum level) in frequency bands centered at 4.3, 8.0, 14.5 and 25.0 kHz

with windspeed. They observed that the spectrum levels at 14.5 and 25.0 k.Hz did not

increase as rapidly with windspeed as those at 4.3 kHz The effect was more pronounced

at higher windspeeds. They attributed this effect to the bubbly layer generated by

breaking waves at higher windspeeds. The bubbly layer attenuates the sound produced

by breaking waves at the sea surface. The attenuation is more pronounced at higher

frequencies hence the reduced spectral levels at 14.5 and 25 kHz. Vagle et al (1990)

observed that the NSL was lower than that predicted for steady winds when the

windspeed was increasing and when the windspeed was decreasing, it was higher. They

suggest that this is due to disequilibrium of the surface wave field when the windspeed is

changing.

Carey et al (1990) examined ambient sound data over a range of frequencies from

50 Hz to 20 kHz. In figure 1.2 a plot of the sound spectrum level (SSL) at various

frequencies as a function of the windspeed for ambient sound data from the North Sea is

shown. At 20 kHz the SSL increases with the windspeed from 4 m/s to 12 m/s and then

decreases for higher windspeeds. This decrease is attributed to bubble absorption and

trapping of the sound in the near surface bubbly layer. At very low frequencies 50 Hz to

600 Hz the SSL is constant for windspeeds less than 6 m/s and increases with windspeed

at speeds greater than 6 m/s.

35



I
I
I
I

WIND WINDIla CLS SPEED

100 7 1 ..6. 2ms
DISTANT WIND 8 r 2 - 2.S $Is

90- SOURCES SPEED 9 2.5 - 3.15 I

- oK DOMINANT DEPENDENCE 10 [3.15 . 4
-80- 200Hz 11 4-5

- 31HMz 12__5__61

-=00K 13 1 6.25.-8

60- 1. k0 
14 8 - 10

2.0kz 15 10 - 12.5
3.15.s 16 1 12.5-16

.0kK...,. 17 76 - 20 i
FE U=- is 20. -2s

12.5A ki1z ~ UBBL ASSORP flO 19 1 25 - 31.5
30 Ok~z.. ATRAPPING 20 31.5.-40

2 4 6 8 10 12 14 16 18 21. WDa30m

I
I
I
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LZ Sound Produced hl Oil1ain Air Bubbles

Minnaert (1933) studied the oscillation of air bubbles released from an

underwater nozzle. He calculated the kinetic energy of the liquid surrounding the bubble

and the potential energy of the gas inside the bubble and obtained an equation for the

resonant frequency of the lowest mode of bubble oscillation. The radian frequency of the

lowest mode (volume pulsations) is given by,

O. = [l] f J 1.1

where ab is the resonant radian frequency, ao is the equilibrium radius of the bubble, K is

the polytropic index of the bubble gas, P0 is the ambient pressure at the bubble and p is

the density of water. If it is assumed that the bubble compression is adiabatic, as

Minnaert (1933) did, then ic = y = 1.4 the ratio of the specific heats. At resonance the

adiabatic assumption is valid; however, at lower frequencies oscillating bubbles behave

isothermally and K = 1 (Prosperetti 1984).

The effect of nonspherical bubble shape on the resonant frequency was found by

Strasberg (1953) to be quite small. He modeled the shape of nonspherical bubbles as a

family of oblate spheroids. When the ratio of the major to minor axis was equal to 3 the

resonant frequency was 5% higher than that of an equal volume spherical bubble.

If the bubble is oscillating near a free surface, as is often the case for bubbles

beneath breaking waves, then the resonant frequency is altered. For sound waves in

water incident on a free surface with air, the surface acts as a pressure release surface.

The impedance, pc, (where p is the density of the fluid or gas and c is the velocity of

sound in the fluid or gas) of the water is much greater than that of the air. Therefore the

pressure reflection coefficient, defined as the ratio of the amplitude of the reflected
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pressure wave to that of the incident pressure wave, equals minus one and the pressure I
transmission coefficient, defined as the ratio of the amplitude of the pressure wave

transmitted into the air to that of the incident pressure wave, equals zero. The acoustic

energy is totally reflected but with a phase shift of X and the amplitude of the acoustic

pressure field transmitted into the air is negligible (Dowling and Ffowcs Williams,

1983). The effect of the pressure release surface is to cause the oscillating bubble which I
radiates sound as a monopole source when it is located far from any boundaries to radiate

sound as a dipole. This is evident from the fact that the radiated pressure field from a

bubble located at a distance /2 beneath a free surface is equal to that of an oscillating

bubble radiating as a monopole plus the pressure field from an image bubble located a

distance L/2 above the free surface and oscillating 1800 out of phase with the real bubble.

The sum of these two pressure fields meets the pressure release boundary condition at the

free surface and produces a dipole radiation pattern (Clay and Medwin, 1977, p.452). It I
can be shown that when the ratio of the bubble radius to the distance between the free

surface and the bubble is small, a. / L << 1, the resonant frequency can be approximated

by,

o = cob (1 + ao / L)' I  1.2 1

where co, is the resonant frequency including free surface effects, 4 is given by equation U
1.1 and L is twice the distance from the bubble center to the free surface (Longuet-

Higgins, 1990). If we take a. / L = 0.2 (the bubble is 5 radii away from the free surface)

then eq. 1.2 gives w,= 1.10 t4, an increase of 10%.

Franz (1959) investigated the sound produced by the impact of solid bodies and

water drops on a free surface. He conducted a series of experiments using high speed

photography and sound measurements to study the impact and splashes produced by rigid

bodies and water drops. He found that the sound was due to; 1) the initial impact and

I
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passage of the body or drop through the free surface, 2) the resonant vibrations of the

rigid body, and 3) the volume oscillations of air bubbles in the water. More recently

Pumphrey and his co-workers (Pumphrey et al 1989 and Pumphrey and Crum 1990) have

studied the problem of sound from drop impact and rainfall in detail. They observed that

every drop produces sound due to its impact but that only some of the drops produce

sound due to the formation of an air bubble. It was discovered that for drops falling at

their terminal velocities only a narrow range of drop sizes, 0.8 to 1.1 mm, entrained

bubbles. The acoustic signals radiated by the oscillating bubbles were damped sinusoids

and the frequency of oscillation was well predicted by Minnaert's formula, equation 1.1.

The pressure radiation pattern was consistent with the assumption that the bubbles radiate

as dipoles due to their close proximity to the free surface.

1. Mrasurments of th Sound Generate bl Breaking 3Yax

Breaking waves were first suggested as a source of the wind dependence of

oceanic ambient sound by Knudsen et al in 1948. More recently Kerman (1984), Farmer

and Vagle (1988) and Pumphrey and Ffowcs Williams (1990) have also concluded that

the wind dependence of ambient sound in the ocean at frequencies greater than several

hundred Hz is caused by the increasing density and frequency of occurrence of breaking

waves. Farmer and Vagle (1988) sampled the sound produced by breaking waves in the

ocean in three frequency bands centered at 4.3, 14.5 and 25 kHz with three hydrophones

located at depths of 1, 10 and 40m. They used the data from the 4.3 kHz band to infer

information about the surface wave field. A peak at one-half the frequency of the

dominant waves was observed in the acoustic spectra. This is consistent with the

observation that waves tend to break at one-half the frequency of the dominant waves

(Donelan et al 1972). They concluded that the variability of the acoustic signal is
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governed by; 1) the mean spacing of the breaking events, 2) the duration of the events, 3) I
the tendency of the breaking events to occur at twice the dominant wave period, and 4)

the larger scale "groupiness" of the wave field. They used a model to quantitatively

estimate the wave field parameters from the acoustic time series. Increasing windspeeds

were found to produce increases in; 1) the dominant wave period, 2) the mean breaker

spacing, and 3) the acoustic strength of the events. These results were significant I
because they demonstrated that measurements of the sound generated by breaking waves

could be used to study the kinematics and statistics of breaking waves.

In another field experiment Farmer and Vagle (1989) sampled the sound

generated by breaking waves in the frequency range 40 Hz to 20,000 Hz. Plots of the

sound spectrum level in three frequency bands showed that the signal level in all three I
bands rise simultaneously and then decay gradually. An example of the sound spectrum

level as a function of time in the three bands for a typical breaking event is shown plotted

in figure 1.3. They observed that the acoustic spectra had well defined peaks which

remained generally consistent from one breaking event to the next, but which changed

significantly from storm to storm. The fine structure of the observed spectra remained

coherent throughout a breaking event and was similar from one event to the next. This

can be seen in figure 1.4 where three of their sound spectra are plotted showing the 1
background level prior to breaking in the upper plot and two spectra at different times 3
during the breaking event in the lower two plots. They state that the coherent fine

structure evident in the lower two spectra was typical of their complete data set. They do

not believe that this coherent structure is due to coherent features in the sound generation

mechanism or the hydrodynamics of the breaking process but rather is due to the effects I
of waveguide propagation of the sound through the ocean-surface bubble layer.

Farmer and Vagle (1989) investigated this hypothesis by estimating sound speed

anomaly profiles from bubble populations which were obtained from multi-frequency

inverted echo sounder data. The profiles were then used to calculate the modal cut -ff

4
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Figure 1.3 An example of the sound spectrum level as a function of time in three
frequency bands measured beneath a breaking wave in the ocean (from
Farmer and Vagle, 1989).
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frequencies of the acoustic waveguide formed by the bubbly layer. The predicted cut-off

frequencies were in reasonable agreement with the observed peaks in the acoustic

spectra. From this they concluded that the observed coherent structure of the sound

spectra was caused by the propagation of the received signals through the waveguide

formed by the surface bubble layer. These results are important because they

demonstrate that not only can the sound generated by breaking be used to infer

information about the kinematics and statistics of breaking waves but it can also be used

to quantify the effect breaking waves have on the ocean surface layer.

Farmer and Vagle (1989) also concluded from their data that breaking waves

produce sound at low frequencies, in the range 50 Hz to 500 Hz. Vagle (1989), referring

to the same data set, concludes that breaking waves contribute to the ambient sound field

at frequencies as low as 50 Hz. Figure 1.5, reproduced from Vagle (1989), shows the

sound spectra from four breaking events where the background f-2 trend has been

removed. Low frequency ambient sound is clearly evident at frequencies as low as 60

Hz.

Crowther (1988, 1989) used a bottom mounted directional hydrophone at a depth

of 65 m to 80 m to study the sound from breaking waves in the frequency range from 10

kHz to 50 kHz. He observed that fluctuations in the hydrophone signal caused by

breaking waves could be as large as 20 dB. In figure 1.6, reproduced from Crowther

(1988), a plot of the pressure spectrum level in five frequency bands 2 kHz wide and

centered at frequencies from 10 kHz to 50 kHz is shown. The large fluctuations in the

signal correspond to the passage of breaking waves above the upward looking

hydrophone. The signals from the various bands are remarkably similar although the

fluctuations in the signal centered at 10 kHz are not as large as in the other bands. This

is likely due to the fact that the hydrophone beamwidth was much larger at 10 kHz and

therefore the signal is averaged over a much larger area of the ocean surface. The sound

was measured for windspeeds in the range 3 m/s to 20 m/s. He found that the horizontal
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Figure 1.6 The pressure spectrum level of the sound as a function of time sampled by an
upward looking directional hydrophone mounted on the ocean floor in 80

meters of water in five 2 kHz wide frequency bands from 10 kHz to 50 kHz
(from Crowther, 1988).
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speed of the sound sources beneath breaking waves was approximately equal to one-half

the windspeed in well developed seas.

Hollet (1989) used a vertical array of hydrophones to form an end-fire beam

which received the sound from a patch of the ocean surface directly above the array. I
Strong bursts of sound were observed which correlated with visual observations of

whitecaps directly above the array. During the breaking events significant low frequency

sound at frequencies as low as 200 Hz was observed.

Banner and Cato (1988) used simultaneous sound measurements and high speed

photography to study the mechanism of sound generation beneath a laboratory model of

a breaking wave. They generated a quasi-steady stationary breaking wave by

submerging a hydrofoil in a steady flow. The acoustic signal was found to be composed I
of "discrete tone bursts" which were associated with the formation of bubbles at the

leading edge of the breaker and with the splitting and coalescence of bubbles. They

concluded that the character of the observed sound suggested that its source was the 3
damped resonant oscillation of air bubbles in water. Bubbles bursting at the free surface

did not appear to produce significant sound energy and no sound was observed to I
correlate with the large deformations of bubbles as they were swept downstream through

the wave.

Pumphrey and Ffowcs Williams (1990) studied the generation of sound beneath a 3
"rather crude model of a breaking wave". Breaking was modeled in a channel using the

steady flow of water over a small weir. They made simultaneous sound measurements I
and high speed cinematographic photographs of the flow. It was found that the

beginning of sound production coincided with the formation of bubbles as they detached

from the free surface. The measured frequency of oscillation agreed well with the 3
theoretically predicted values (see equation 1. 1) for air bubbles oscillating at their

resonant frequency. I
I
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Some of the strongest experimental evidence to date in support of the hypothesis

that newly created bubbles oscillating at their linear resonant frequency are the dominant

source of sound beneath gently breaking waves has been provided by Medwin and his co-

workers (Medwin and Beaky, 1989 and Medwin and Daniel, 1990). The experiments

were conducted in the Ocean Acoustic Wave Facility at the Naval Postgraduate school

which consists of a wave channel 17 m long, 1.2 m wide and 1.2 m deep which

terminates in a 3 m deep, 3m square anechoic chamber. A wedge shaped plunger

wavemaker was used to generate a steady train of 1.4 Hz surface waves which broke

approximately 1 m after entering the anechoic chamber. The sound was measured using

two hydrophones mounted at 12 and 24 cm below the free surface. The acoustic time

series were found to be composed of a number of damped sinusoidal pulses.

Medwin and Beaky (1989) studied over 2000 sound pulses and classified them

according to the shape of the pulse. Type Al (simply damped, spherical bubble) and A2

(doubly damped, spherical bubble) occurred approximately 65% of the time. A typical

type A bubble oscillation time series is shown in figure 1.7. Type Al bubbles are

damped sinusoidal pulses characterized by a single damping rate which agreed well with

theoretically predicted damping rates for air bubbles in water. Type A2 bubbles are

damped sinusoidal pulses characterized by two damping rates. Initially the damping is

twice as large as theoretically predicted and the final damping rate equals the predicted

values. They attribute the higher damping to non-linear dissipation mechanisms such as

bubble interaction with the ocean surface or acoustic streaming. The remaining 35% of

the bubbles are classified as type B, damped oscillation with spin-off bubbles, type C,

near surface moving bubbles, and type D, amplitude-modulated bubbles. The slope of

the observed acoustic spectra was approximately -5 dB per octave in agreement with the

observations of Knudsen et al (1948) and Wenz (1962). Medwin and Beaky (1989)

conclude that ambient sound in the ocean in the frequency range I kHz to 20 kHz is due

to the oscillating air bubbles produced by spilling breakers. They also state that sea
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Figure 1.7 Typical sound pulse emitted by an oscillating air bubble entrained by a gently 3
spilling breaking wave in a laboratory wave channel (from Medwin and

Beaky, 1989).
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surface sound does not depend on the number of "senile" bubbles which may be observed

as whitecap coverage or bubble clouds on inverted echo sounders.

Medwin and Daniel (1990), utilizing the same experimental set-up as Medwin

and Beaky (1989), identified the radius, position and time of creation of several hundred

bubbles beneath gently spilling waves. The bubble sizes observed ranged from 50 gm to

7.4 mm with the peak in the bubble size spectrum occurring at 150 pim. They found that

bubble production decreases exponentially with time and that 97% of the bubbles were

produced in the first 500 ms after the initiation of breaking. They calculated the volume

of air encapsulated by bubbles per square meter of water surface as a function of the

bubble radius and concluded that the largest bubbles contributed the majority of the

volume even though there were relatively few of them.

Updegraff and Anderson (1991) gathered measurements of the sound radiated by

gently spilling breaking waves using a floating submerged instrument called the synoptic

surface noise instrument (SSNI). The instrument was used to take simultaneous video

and hydrophone measurements at a depth of approximately 1 m in the open ocean. The

instrument was deployed only during periods of low windspeed, 1 m/s to 2.1 m/s, in

order to study the sound generated by "micro-breaking". They found that the acoustic

spectrum from a small spilling wave had a slope of -5 dB per octave and that the time

series was composed of a series of damped sinusoidal pulses. A plot of a typical pulse

observed by them is shown in figure 1.8. They note that their data "bears a striking

acoustical resemblance to the artificial wave breaks described by Medwin and Beaky

(1989)". It was also observed that the peak pressures of the damped sinusoidal pulses

were scattered between 0.2 and 1.2 Pa and showed no dependence on frequency. They

compared the decay rates of the observed pulses with Strasberg's (1956) empirical

formula for the damping of pulsating air bubbles in water and the agreement was

reasonable. They concluded that the sound under gently spilling waves was due to the

oscillation of air bubbles with radii of approximately 1 mm.
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LA Colcive Bubble Cloud Ocilations

The collective oscillation of bubble clouds beneath breaking w,,':; has been cited

by several investigators as a possible source of low frequency sound (Prosperetti 1988,

Carey et al, 1990, Lu et al 1990, Yoon et al 1991 and Kolaini et al 1991). Prosperetti

(1988) argues that at frequencies below 500 Hz single bubble oscillations are an unlikely

source of sound because bubble sizes of 0(1 cm) are required and the available data

indicate that very few bubbles of this size are generated. This argument is not

convincing given the fact that Medwin and Daniel (1990) observed bubbles with radii up

to 7.4 mm under very small breaking waves. An oscillating bubble of radius 7.4 mm

radiates sound at 440 Hz and even though Medwin and Daniel observed very few bubbles

larger than 3 mm they still saw a broad maximum in the sound spectrum at

approximately 1 kHz. Whether or not Prosperetti's argument that single bubble

oscillations are unimportant below 500 Hz is valid, it is still an unresolved issue as to

whether collective bubble cloud oscillations occur beneath breaking waves and, if they

do, does this mechanism produce significant amounts of sound.

Prosperetti (1988) postulates that a cloud of bubbles will behave like a system of

coupled oscillators, pulsating according to collective modes. To first order the lowest

resonant frequency of oscillation, frm, of a bubble cloud is approximately c,/L where cm

is the speed of sound in the bubbly mixture and L is the linear dimension of the cloud.

The sound speed of a bubbly mixture is given by,

C- pa(1-cx) 1.3
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where P is the pressure in the mixture equal to the atmospheric pressure P. for bubble I
clouds close to the ocean surface, p is the density of pure water, 1000 kg/m 3 and a is the

void fraction defined as the volume of air divided by the total volume (Carey and

Browning, 1988). Equation 1.3 is valid for, 0.002 < a < 0.94. If the term of order (a)2

is ignored in equation 1.3 then the equation for f,,, becomes, I
Tmypa_ 

1.4~I

If the bubble cloud is spherically shaped and contains N bubbles of equal radius a. the 3
void fraction is given by,

31.5

Using these results and equation 1. 1 for the resonant frequency of a single bubble, fb, the

ratio of the resonant frequency of the bubble cloud, fmin, to fb, the resonant frequency of a 3
single bubble is, I

fb
from~a1MN~n N.l 1.6

I
For example a spherical bubble cloud with a = 0.1, L =0.1 m and a. = 1 mm equation

1.5 gives N = 105 and equation 1.6 predicts that the cloud would oscillate at a frequency

of 103 Hz, or 0.032 times the resonant frequency, 3.26 kHz, of an individual 1 mm 3
radius bubble.

I
I
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The damping constant for each bubble in a bubble cloud is approximately equal

to the value for a single isolated bubble oscillating at the natural frequency of the

collective mode (Prosperetti, 1988). The damping constant is a strong function of

frequency with a minimum value at the resonant frequency. In figure 1.9 (Prosperetti

1984, figure 3) the total damping constant for a 1 mm radius air bubble in water is

shown. It is evident from figure 1.9 that at frequencies well below resonance the

damping is greatly increased. The effect of this increased damping is less when the

bubble cloud is made up of larger diameter bubbles (Prosperetti 1988). Therefore

Prosperetti concludes that if the collective oscillation of bubble clouds is to have any

significance the clouds must consist of bubbles of radii > 1 mm.

Carey et al (1990) calculated the resonant frequencies of a bubbly spherical

volume immersed in an infinite fluid. They assumed the bubbly region was acoustically

compact, kr o << 1, where k is the acoustic wavenumber and r. is the radius of the bubbly

region. The bubble cloud was assumed to be made up of small bubbles whose resonant

frequencies were much higher than the excitation frequency. Buoyancy and surface

tension forces were neglected. The properties of the bubbly region were given by the

sound speed of the bubbly mixture as given by equation 1.3 and the mixtures density, p,,.

They assumed the cloud was excited by a plane acoustic wave and the boundary

conditions enforced at the edge of the bubbly region were the continuity of the pressure

and the velocity. The solutions for the scattered pressure field and the pressure field

inside the volume lead to an expression for the resonant frequency of the lowest mode of

the bubble cloud, f.. The equation is,

f. =1.7
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where y is the ratio of the specific heats, y = 1 for isothermal conditions, p is the density

of the fluid and a is the void fraction. The same formulation was used to solve for the

resonant frequencies of a long cylindrical bubbly region. In figure 1. 10 the resonant

frequency of a spherical bubble cloud as given by equation 1.7 for various values of the

void fraction is shown plotted as a function of the cloud radius. Also shown plotted is

the resonant frequency of the cylindrical bubble cloud. For a spherical cloud of radius 20

cm and a void fraction of 1% the resonant frequency is approximately 150 Hz. For a

cylindrical region with a radius of 20 cm and a void fraction of 1% the resonant

frequency is approximately 40 Hz.

Yoon et al (1991) reported on an experimental investigation of the collective

oscillations of a cylindrical bubble cloud. The cloud was generated by the steady

injection of air through a series of hypodermic needles located at the bottom of a tank of

fresh water. The measured acoustic spectra showed low frequency peaks from 260 to

550 Hz. Lu et al (1990) used averaged equations based on the assumption that the

bubbly cloud is a continuum described by effective bulk properties to calculate the modes

of oscillation of cylindrical bubble clouds. Yoon et al (1991) compared the observed

frequencies to theoretically predicted values using the results of Lu et al (1990). The

agreement between the experimental and theoretical results was excellent. They

conclude that their results support the hypothesis that most of the observed oceanic

ambient sound at frequencies below 1 kHz may be due to the collective oscillation of

bubble clouds produced by breaking waves. However, the authors themselves state that

their experimental geometry is not of direct relevance to oceanic conditions. Therefore it

still remains to be shown that the collective oscillation of bubble clouds is a source of

significant sound in the ocean.

Kolaini et al (1991) studied the sound generated by bubble clouds produced when

a fixed cylindrical volume of water is dropped onto a still water surface. The

characteristics of the bubble cloud were varied by changing the height from which the
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cylinder of water was dropped and by changing the volume of water dropped. They

found that the frequency generated when a "substructure" detaches from the rest of the

cloud correlated with the volume of the dropped water. This can be seen in figure 1. 11

(Kolaini et al 1991) where the frequency is plotted versus the volume of water dropped.

The detached substructures were observed to oscillate at frequencies as low as tens of Hz.

They state that if their observations are duplicated in the ocean, then a mechanism for

low frequency sound generation by breaking waves may have been discovered.

LI Models of th Sound Generated by re&akin Wav

Kerman (1984) presented one of the first models of the underwater sound

generated by breaking waves. The model predicted a sound intensity proportional to the

wind friction velocity raised to the 3/2 power in agreement with Perrone's (1969) data.

The mechanism of sound generation was assumed to be large amplitude, nonlinear

bubble oscillations induced by turbulent pressure fluctuations. He argued that bubbles

with radii comparable to the Kolmogorov scale would produce the most intense sound.

More recently Guo (1987) and Ffowcs Williams and Guo (1988) use Lighthill's

(1952) analogy and the results of Crighton and Ffowcs Williams (1969) to investigate the

sound generation mechanisms beneath breaking waves. They concluded that the

dominant mechanism of sound generation under breaking waves is splashing water

sprays. The unsteady momentum fluctuations caused by water sprays were shown to

produce a dipole sound field. Sound production from the forced oscillation of air

bubbles by turbulence was shown to be negligible. They did not consider the free

oscillations of newly created air bubbles as a source of sound and therefore they failed to

recognize that this is likely the dominant mechanism of sound generation beneath

breaking waves.
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Prosperetti and Lu (1988) examined the sound generation mechanisms of

cavitation-like bubble collapse (similar to the mechanism proposed by Kerman, 1984)

and the bursting of air bubbles at the free surface. Using a simplified Rayleigh-Plessett

equation they show that the magnitude of the pressure fluctuations required to promote a

violent collapse of the bubble are unlikely to occur in the ocean. They therefore

concluded that the cavitation-like collapse of bubbles is unimportant as a source of sound

in the ocean. The bursting of floating air bubbles was analyzed by assuming that the

pressure disturbances generated in the water when the bubbles burst were proportional to,

; / a. , where a is the surface tension of water and a. is the bubble radius. They

calculated that the number of bursting bubbles required to produce an intensity of 50 dB

re I piPa 2/Hz in the water would be 48 x 106 /(sec cm 2). They state that most of the

acoustic energy associated with the bursting bubble is radiated into the air due to the

large impedance mismatch between air and water. Their conclusion was that this

mechanism contributes a negligible amount of sound to the ocean.

Hollett and Heitmeyer (1988) reported on a model of the high frequency sound

generated by breaking waves in which the mechanism of sound production was assumed

to be the linear oscillation of newly formed air bubbles. They postulated that the bubble

oscillations were excited by either a sudden change in the external pressure at the instant

of bubble formation or by the initial rate of change of the bubble volume. They used the

whitecap coverage data of Ross and Cardone (1974) to obtain a breaking wave

occurrence rate and a model proposed by Crowther (1980) to obtain the surface

generation rate of bubbles at the ocean surface. The sound spectra computed using the

sudden pressure change excitation hypothesis agreed approximately with the

corresponding Wenz spectrum.

Crowther (1988) also modeled the sound from breaking waves by assuming that

the linear oscillations of newly created bubbles was the dominant mechanism. He

obtained a bubble creation rate by fitting the data of Johnson and Cooke (1979) with a
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power law relationship proportional to the windspeed cubed, U103, and the inverse of the

bubble radius cubed, a-3 . The computed spectra, shown in figure 1.12, matched the

slope of the Wenz spectra but the computed levels were 10 dB higher than the observed

levels. There was a great deal of uncertainty associated with the calculation of the I
bubble creation rate and this may have been what caused the model to predict sound

levels an order of magnitude higher than the observed sound spectra. Crowther also

postulates that because wave breaking is confined to a small area, the bubble clouds are

very dense and many bubbles which normally would radiate sound are masked by the

surrounding bubbles. I
Prosperetti (1988) examined the generation of sound at the sea surface caused by

three mechanisms; 1) the amplification of water turbulence noise in the frequency range

up to 100 Hz to 200 Hz, 2) the oscillation of newly formed bubbles for frequencies > 1

kHz to 2 kHz, and 3) the collective oscillation of bubble clouds for frequencies from 200

Hz to 1 kHz. Turbulence in the absence of air bubbles radiates sound as a quadrupole I
distribution and therefore is relatively inefficient (Lighthill 1952). The presence of air

bubbles in the turbulent region greatly enhances the acoustic efficiency because the

bubbles respond to the turbulent pressure fluctuations by oscillating volumetrically as

monopoles (Crighton and Ffowcs Williams 1969). Prosperetti (1988) used an approach

similar to that of Lighthill's (1952) to formulate the problem and then estimated the

surface source spectral density due to this mechanism. He took the average lifetime of a

turbulent spot to be 100 s, the vertical extent to be 1 m, the turbulent velocity fluctuations I
to be 0.15 m/s and the void fraction to be 5%. Using these parameters he calculated a

surface source spectral level of 67.2 dB re 1 liPa 2/Hz for a frequency of 50 Hz. This

estimate was comparable to Wilson's (1983) estimates of the source level at 50 Hz which

were 55.4 dB re 1 piPa 2/Hz at a windspeed of 7.5 m/s and 72.0 dB re 1 p.Pa2/Hz at a

windspeed of 20 m/s. However Prosperetti appears to have overestimated the I
significance of this mechanism. By assuming that the lifetime of the turbulent spot is 1
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100 s and the void fraction is 5% he is assuming that the void fraction could have an I
average value of 5% for up to 100 s. Lamarre and Melville (1990) have shown that the

average void fraction under laboratory breaking waves can remain above 1% for up to

one wave period. If we assume a wave period of 6 s then Prosperetti's estimated surface

source spectral level drops to 55 dB re 1 gPa2/Hz a decrease of over one order of

magnitude. There is no experimental evidence which supports the hypothesis that this I
mechanism is a significant source of sea surface sound. Order of magnitude estimates

such as Prosperetti's are useful for encouraging discussion about possible sources of sea

surface sound but the large uncertainty associated with such estimates must be taken into

account.

Using the same formulation as described above Prosperetti (1988) derived an I
equation for the surface source spectral density due to the oscillation of newly formed

bubbles. The surface source spectral density was found to be,

poa2 Xo02 V 53(0o4

S(c0 ) - Tc3bV 2  1.8

where S(woo) is the surface sourk'ce spectral density, p is the density of water, a is the

average void fraction, X0 is the initial fractional amplitude of oscillation (i.e. X(t) = a(t) I

a.), V is the volume of the bubble cloud, 8 is the depth of the cloud, co is the radian

frequency of oscillation, T is the averaging time, c is the speed of sound, b is the

damping constant and e is the period of the breaking wave. Taking V = 0.01 M3 , a = I
10%, T = I s, X0 = 0.1, 8 = 0.1 m and b = 271 Hz for a lmm radius bubble he obtains a

surface source spectral density of 95.9 dB re 1 jiPa2/Hz. This result is 20 to 30 dB higher

than observed sound levels. However, this estimate is for a single bubble cloud

entrained by a breaking wave and will be reduced considerably if it is multiplied by the

percentage of the ocean surface which is covered by breaking waves. Taking this into

I
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account Prosperetti concludes that his order of magnitude estimate gives intensity levels

comparable to the observed levels.

Longuet-Higgins (1989a,b) proposed a theory which suggests that the shape

oscillations of bubbles can resonate (at second order) with the volume or breathing mode

and produce significant sound levels. The resonance occurs only for specific bubble

sizes when the natural frequency of the volume mode equals twice the resonant

frequency of the shape oscillations. The resonant frequency of the volume mode is given

by equation 1.1 and the resonant frequencies of the shape oscillations are given by,

a, = (n-l)(n+l)(n+2)(G/a 3 ) 1.9

where n is the degree of the spherical harmonic S. (Lamb 1932). There is some

indication that this mechanism has been observed in measurements of oceanic sound

(Longuet-Higgins 1990) but more concrete experimental evidence is required to confirm

that this mechanism is important.

Pumphrey and Ffowcs Williams (1990) concluded from experimental results that

most of the sound generated by breaking waves is due to the free oscillations of air

bubbles. They then examined the possible mechanisms by which newly formed bubbles

are excited. Four mechanisms were considered; 1) the surface tension or Laplace

pressure as the bubble is formed, 2) surface waves or shape oscillations, 3) the initial

volume velocity, and 4) the hydrostatic pressure. The Laplace and hydrostatic pressures

were found to produce weak oscillation pressures, approximately 5% of the observed

values, and therefore these mechanism were dismissed. A simple estimate was made of

the significance of Longuet-Higgins' (1989ab) theory that the shape oscillations transfer

energy to the volume mode. A single spherical bubble was assumed to be distorted until

it was nearly broken into two smaller spherical bubbles enclosing the same volume as the

single bubble. Then all the increased bubble energy was assumed to be transferred
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instantly to the volume mode. This analysis predicted oscillation pressures of 0.13 Pa for

a bubble of radius 1 mm located 2 mm below the free surface. They point out the this

value is at the lower limit of the observed experimental values and that their simplified

analysis probably overestimated the oscillation pressure. Therefore they concluded that

the coupling of the shape oscillations to the volume mode is probably not a significant

sound generation mechanism. I
The effect of the initial volume velocity of a bubble at the instant of closure was

examined with the aid of high speed photography. The rate of growth of an air bubble

beneath a small laboratory waterfall was measured from successive frames of a high

speed film. The volume velocity U was found to be 0.23 t 0.1 m/s for this single bubble.

This gave a dipole strength D of 1.3 t 0.6 Pa m , in agreement with the experimental I
values observed by Medwin and Beaky (1989). From these results they concluded that 3
the initial volume velocity of the bubbles is the mechanism which is responsible for

imparting the initial energy which drives the subsequent bubble oscillations.

Outl ne.of F rEznimnta1 Objective I

As the preceding literature review demonstrates, there has been a great renewal of U
interest in breaking waves and sea surface sound in recent years. Substantial progress

has been made towards understanding the mechanisms which generate sea surface sound

and the dominant role breaking waves play in this process. It has been shown that the

dynamics of breaking are related to the averaged acoustic measures such as the mean

square acoustic pressure (Melville et al 1988). It has also been shown that the acoustic I
signals generated by breaking waves can be used to infer information about the 3
kinematics and statistics of breaking waves (Crowther, 1988 and Farmer and Vagle,

1988). Conclusive experimental evidence has been presented which demonstrates that 5

6
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the source of sound beneath gently spilling breaking waves is individual oscillating air

bubbles (Medwin and Beaky, 1989 and Updegraff and Anderson, 1991).

However, there is still a great deal about the sound generated by breaking waves

which is not well understood. For example, it is not clear that the dominant source of

sound beneath larger scale, energetic, plunging breaking waves is the oscillation of

individual air bubbles. Whereas, there is some evidence that the collective oscillations of

bubble clouds may be an important source of low frequency sound beneath more

energetic breaking waves, no convincing experimental evidence has yet been presented

which shows definitively that this is the case (Yoon et al, 1991). In addition, it remains

to be shown that more than just the averaged acoustic measures are correlated with the

dynamics of breaking. More detailed studies of the sound radiated by breaking may

show that the spectral content of the acoustic signals is related to the dynamics of

breaking or that the time evolution of the acoustic pressure is closely linked to the

hydrodynamics of the breaking process.

The following chapters present the results from a series of laboratory experiments

in which the sound produced by two- and three-dimensional breaking waves was

measured. The correlation of the averaged acoustic measurements with the dynamical

variables and the scaling of these correlations with the wave packet wavelength will be

examined. A more detailed analysis of the sound generation process and its cor ling to

the dynamics of air entrainment and energy dissipation will be discussed. A comparison

will be made of the sound generated by two- and three-dimensional breaking waves.

Observations of low frequency sound generated by breaking waves will be presented and

the possible sources of these low frequency signals will be examined in detail. Finally,

an analytic model of the sound produced by gently spilling waves will be presented and

discussed.
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The primary objectives of the research are as follows:

1) to determine whether the averaged acoustic and microwave measurements I
correlate with the dynamics of breaking waves over a range of wave packet

scales;

2) to inve" tigate in greater detail the relationship between the sound generation 3
process and the dynamics of breaking;

3) to discover whether significant low frequency sound can be detected beneath 1
breaking waves;

4) to investigate the mechanisms which cause the generation of low frequency

sound when waves break; 3
5) to determine whether the sound produced by gently spilling breakers can be

modeled simply and accurately. 3
I
I
I
I
I
I
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Chanter 2 Micrwa ad Acousti Experiment

This chapter reports on a laboratory experimental study of both the microwave

backscatter and the sound produced by breaking waves. A large portion of this chapter is

taken from, "Microwave backscatter and acoustic radiation from breaking waves", M.R.

Loewen and W.K. Melville, J. Fluid Mech., 224,601-623, 1991. The research was

motivated by the fact that preliminary measurements by Melville, Loewen, Felizardo,

Jessup and Buckingham (1988) demonstrated that both the microwave power

backscattered and the sound radiated by breaking waves correlated with the dynamics of

breaking. Specifically, they found that the mean square acoustic pressure and the

backscattered microwave correlated with the fractional energy dissipation. The

preliminary experiments were conducted using a single wave packet with a center

frequency of 0.88 Hz and the results were significant because they showed that

dynamical information, such as the amount of energy dissipated due to breaking, could

be inferred from the acoustic or microwave signal. In order to extend the measurements

simultaneous microwave, acoustic and surface displacement measurements of three wave

packets of center frequencies 0.88, 1.08 and 1.28 Hz have been carried out.

2Li J1ratur~ Revv*?, Microwave Bck ter

Several studies of radar return at grazing angles have shown that large

fluctuations in the radar cross section, commonly referred to as "sea spikes" are

associated with breaking waves. Lewis and Olin (1980) took simultaneous radar

backscatter measurements and video recordings to show that sea spikes were correlated

with whitecaps. Ewell, Tuley and Home (1984) tracked sea spikes on the ocean surface,
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and observed that they moved with a speed approximately equal to the phase speed of the

dominant surface waves.

Recent work by Jessup, Melville and Keller (1991ab) has demonstrated that

microwave backscatter measurements at moderate incidence angles (20" to 700) can be I
used to quantitatively study breaking waves. They observed that the majority of sea

spikes associated with breaking occurred when the steep forward face of a wave passed I
through the radar illumination area and then subsequently broke. The contribution to the

radar cross section from sea spikes and the number of sea spikes were both found to be

approximately proportional to u.3 in agreement with Phillip's (1988) model. The friction

velocity u. is equal to r where r is the shear stress and p is the density of air. The

average radar cross section of an individual sea spike was found to be independent of u.. I
They also observed that the bandwidth of the Doppler spectrum was greatly increased

during breaking similar to the observations of Keller, Plant and Valenzuela (1981).

Jessup, Keller and Melville (1991a) used a detection threshold based on the 3
amplitude of the radar cross section and the size of the Doppler spectrum bandwidth to

identify breaking waves. Simultaneous video recordings confirmed that this technique I
detected 70% of the breaking waves. Keller, Plant and Valenzuela (1981) observed that

the speed of the scatterers increased and approached the phase speed of the dominant

ocean waves during breaking. Jessup, Melville and Keller (1991b) found that the

maximum mean Doppler velocities associated with the detected breaking events was

approximately equal to 25% of the phase speed of the dominant waves. I
There is considerable disagreement in the literature over which scattering

mechanism produces the sea spikes. Alpers, Ross and Rufenach (1981) suggest that sea

spikes are due to the spontaneous generation of Bragg waves at the steep crests of

breaking waves. Kwoh and Lake (1981) studied the microwave backscatter from

laboratory breaking waves and concluded that the backscatter could be separated into I
specular and non-specular components. The specular component was attributed to either
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the turbulent wake of the breaking wave or the capillary waves generated on the forward

face of the steep wave. The non-specular component was attributed to wedge-like

diffraction from the sharp crested breaking wave, at or near breaking. Banner and Fooks

(1985) made laboratory radar measurements of a quasi-steady stationary breaking wave.

They found that the backscatter was due to Bragg scattering from the hydrodynamic

disturbances, which were generated just downstream of the breaking crest.

Phillips (1988) used an approach which did not attempt to characterize the

detailed scattering mechanism. He describes the backscatter from breaking waves as the

overall contribution from the family of surface configurations that are present throughout

the breaking process. The contribution to the normalized radar cross-section from sea

spikes and the frequency of occurrence of sea spikes are both predicted to be proportional

to u.3.

£~m~n.a.1EWavrc

The experiments were conducted in a steel-framed glass wave channel 25m long

and 0.38m wide at the R.M. Parsons Laboratory, MIT. The wave channel was filled with

fresh water to a depth of 0.38 m for these experiments. A computer-controUed piston

wave generator was programmed to focus a dispersive wave packet at a point xb down

the channel. The wave packets were synthesized from N sinusoidal components of

constant slope ak, where a is the component amplitude and k is the component

wavenumber. This technique has been used previously to study the energy dissipation

and wave forces produced by deep water breaking waves (Chan and Melville, 1988 and

Rapp and Melville, 1990). The method and the formulation are presented in detail by
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Rapp and Melville (1990). The following description is a summary of their work and is

included here for completeness.

The linear dispersion relation for finite amplitude surface waves is, 1
(27rfn)2

= k, tanh(kh) 2.1

where 27rf. = o is the radian frequency of the nth component, k is the wavenumber, g is 3
the acceleration due to gravity and h is the water depth (Mei, 1983). For 'Os work the

number of components N was held constant at 32 and they were spread evenly over a I
frequency bandwidth, Af defined by, 3

Af = fN-f 2.2 3

the center frequency of the packet is given by, I

1 2.31f. = 2(fN + fl)2.

I
The free surface displacement at any time, t and position, x along the wave

channel can be written as,

NI
Ti(x,t) = Ja% cos(k~x - 27tf.t - n) 2.4

n=l

where a. is the amplitude and 0, is the phase of the nth component. The basic principle I
of this method of generating breaking waves is that the phase of each component is 3
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adjusted such that according to linear theory the wave crest of each component arrives at

point xb simultaneously. This is accomplished by enforcing the following relationship,

cos(kxb - 2nf,, - = 1 2.5

where th is the theoretical time of focusing. From eq. 2.5 we can calculate the phase of

each component,

n = k.x b - 2rf,, . 2.6

The mean position of the wave maker paddle is at x=O, and therefore the surface

displacement at the paddle is,

N
TI(Ot') = Xa. cos(-klxb - 27tf~t') 2.7

n=l

where t' = t-t. The packet may be advanced or delayed by varying tb without changing

its form or the theoretical breaking location Xb.

In this study the slope of each of the 32 packet components was held constant and

therefore the slope of the wave packet is given by,

S=GNak 2.8

where G is a gain factor, N = 32 and ak is a constant equal to the slope of the

components. The slope of the wave packets was varied by increasing or decreasing the

gain factor, G.
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The wave packets were generated by using an IBM XT computer to convert

digital data to an analog voltage signal which was then fed to the wave maker system. In

order to produce the desired surface displacement at the paddle, given by eq. 2.7, it was

necessary to account for the complex transfer function of the wave maker system. The I
transfer function can be written as,

H(f) = A(f)eJ ( )  2.9

where A(f) is the amplitude transfer function and q)(f) is the phase transfer function. The 3
complete wave maker system, shown in figure 2.1, was comprised of a Metrabyte DAS-

16 multifunction board (used for digital to analog conversion), a Model 107 precision I
buck and gain amplifier (manufactured by Michael Head Designs), the servo control 3
valve and electronics, the hydraulic system and the wave paddle apparatus. The buck

a-d gain amplifier was required because the DAS-16 board digital to analog output I
vried from 0 to 5 volts and the wave maker required a t5 volt signal. The buck and

gain amplifier was set to buck (offset) the signal by 2.5 volts and the gain was set at 2 to I
p, oduce a t5 volt signal.

The transfer function of the complete system was measured by generating small

a-liplitude sinusoidal waves of different frequencies and amplitudes and then measuring I
t.e surface displacement amplitude and phase at a distance 2 m downstream of the

p, ddle. Measurements were made with waves of frequency 0.4 to 2 Hz and amplitudes 1 1
to 4 mm to match the frequ,;ncies and amplitudes of the wave packet components used. 3
The measured amplitude and phase transfer functions are shown plotted in figure 2.2, the

solid lines are smooth cubic spline curves fitted to the data. In table 2.1 the computer 3
programs used to determine the transfer function are listed.

7
I
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PROGRAM PROGRAM FUNCTION

WAVES2.FOR Used on the XT computer which controlled the

wave maker, generated sinusiodal surface waves

and triggered data acquisition computer.

MADTES2.FOR Used on AT data acquisition computer, began

data acquisition after receiving trigger, sampled

the wave gauge signal and the signal produced by

the XT computer.

WAVAMP6.FOR Used to analyze the amplitude data, removes the

D.C. and finds the maxima and minima and

calculates the amplitude.

PHCOMP.FOR Used to calculate the phase data, measures the

phase lag between the maxima in the two time

series of the surface displacement and the XT

output signal.

SPLINE2.FOR Program which fits a cubic spline to the transfer

function amplitude and phase data.

Table 2.1 Computer programs used to obtain the transfer function of
the wave maker system. Listings of these programs can be
found in appendix A.

The programs used to generate the wave packets used the spline curves shown in

figure 2.2 to compensate for the transfer function. The phase of each component

adjusted for the transfer function is given by,

= kXb - 2 fft + p(fp) 2.10
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where p(fp) is obtained from the cubic spline equations. The amplitude of each 3
component was adjusted so that each component had a constant slope equal to ak,, the

slope of the center component The amplitude of each component was calculated from, 3
a. - A(f)k, 2.11

A
where ac is the amplitude of the center component, A(f,) is the value of the cubic spline

equation for the amplitude transfer function data at the center frequency and A(fn) is the I
value at the component frequency. The final signal produced by the XT computer was of 3
the following form,

N
rl(0,t) = G Ia. cos(-kx b - 27tft' - (p(f,)) 2.12

n=1 I

where an is given by eq. 2.11. The computer programs used to generate the wave

packets are listed in table 2.2. 3

I
I
I
I
I
I

76 I



PROGRAM PROGRAM FUNCTION

GENPACK2.FOR Program to generate a raw wave packet signal for

viewing on the oscilloscope. The wave maker

system transfer function is implemented and the

slope of each frequency component is held

constant. The program outputs analog data

through D/A channel 1 for viewing the raw

packet data on the oscilloscope.

SEND4.FOR Uses the data produced by genpack2.for as input

and tapers the packet data with a cosine function

at both ends.

WAVREP3.FOR Program which converts the digital wave packet

data to an analog voltage signal which is sent to

the buck and gain amplifier and then to the wave

maker electronics. It also sends a trigger to the

data acquisition computers.

Table 2.2 Computer programs used to generate the wave packets. See
appendix A for complete listings.

It has been shown that deep water breaking is a function of three dimensionless

parameters; a bandwidth parameter Af/f,, a phase parameter xbk, and a slope parameter

S, (Melville and Rapp, 1985; Rapp, 1986). The earlier experiments showed that the

dependence on Af/fM and xk was weak and that the dissipation due to wave breaking

depended most strongly on the slope parameter S. In the present experiments, Af/f, and

xbk, were held constant at 0.73 and 28.5 respectively, and S was varied. Table 2.3 lists

the characteristics of the three wave packets used in these experiments.
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Wave packet P P2  P3  3
Center frequency, f, (Hz) 0.88 1.08 1.28

Theoretical break point, xb (m) 8.0 5.79 4.27 U
Center component wavenumber, k, 3.56 4.92 6.68

Center component phase speed, c, (m/s) 1.55 1.38 1.20 I
Table 2.3 Wave packet characteristics; Af/f, = 0.73 and xbk, = 28.3 for

all wave packets

2.2.2 Surface Diz~1cznn Me rments

The surface displacement was measured with a set of resistance wire wave gauges 3
and sampled at a rate of 100 Hz using a Metrabyte DAS-16 data acquisition board

installed in an XT computer. The gauges were constructed at MIT and the electronic I
circuitry was supplied by the Danish Hydraulic Institute, model 80-74G. The sensing

wires were two 0.127 mm (0.005 inch) diameter Nichrome 80 wire mounted 4 mm

apart. The wire was purchased from the Pelican Wire Company, Naples, Florida. The

supporting frame was made of 0.25 inch stainless steel tubing and pierced the surface 15

cm away from the wires to minimize the disturbance to the flow. An AC excitation (3 I

kHz) is transmitted through the wires and then amplified, demodulated and filtered to

produce a DC signal proportional to the submerged depth of the wires.

Acetone was used to clean the wave gauges prior to each calibration and the 3
offset and gain on the wave gauge amplifiers was adjusted to give t5 volts at +10 cm and

0 volts at 0 cm. The wave gauges were then calibrated (see program GCAL.FOR 3
appendix XX) by sampling the still water level voltage for 8 seconds, as the gauge was

moved in 2 cm increments from +12cm to -10cm. A third order polynomial was fitted to I

I
78



the average voltage at each amplitude to give a calibration equation relating voltage to

wave amplitude. The standard error of the fit of the equation to the data was calculated,

and the calibration was accepted if the error was less than 0.04cm.'

Prior to each run the still water level was sampled for 20 seconds and this DC

value was used as the zero order term in the calibration equations to remove the effect of

any DC drift. Runs were separated by a minimum of 10 minutes to allow the surface

oscillations in the channel to decay to negligible amplitudes. Rapp (1986) found that the

variation in the linear term of the calibration equation was less than 1% over 8 hours. In

order to minimize the errors due to variations in wave gauge calibration each wave gauge

was calibrated every 4 hours.

The repeatability of the wave packets was monitored by measuring the position of

the wave paddle. The wave maker system included a position transducer which produced

an analog signal proportional to the linear position of the paddle. This signal was

sampled at 100 Hz along with the wave gauge signals and the variance was checked to

ensure that repeated runs of the same wave packet slope produced identical variances.

2,2.a Acoustic Measumn

The acoustic measurements were made with an omnidirectional B&K model 8105

spherical hydrophone and a B&K 2635 charge amplifier. The frequency response of the

hydrophone and amplifier system was constant to within =+2 dB from 2Hz to 20kHz.

Typical frequency response curves for both the 8105 and 2635 are shown in figure 2.3

and the specifications are listed in tables 2.4 and 2.5. The hydrophone signal was

1 At one time during the experiments a small amount of hydraulic oil leaked out of the
wave maker system into the tank and this made it impossible to accurately calibrate the
wave gauges. After skimming the water surface for 24 hours to remove all of the oil the
gauges calibrated with acceptable errors. Following this episode a drip pan was installed
to contain any future oil leaks.

79



I
I

o _ _ _

p I
-10

0 1 00 2 500 ., 2 5 10 20

I
I

___ ;_ ___ I
__J] I

-200.1 M I If 1IW I t

I

Figure 2.3 The upper plot is a typical frequency response of a B&K model 8105 1
spherical hydrophone. The lower plot is the typical frequency response of a

B&K model 2635 charge amplifier. The curve marked acceleration is for
the mode of operation used in these experiments.
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Table 2.4 Specifications of a B&K 8105 spherical hydrophone.
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Table 2.5 Specifications of a B&K 2635 charge amplifier.
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bandpass filtered from 500 Hz to 10 kHz and sampled at 20 kHz with a Metrabyte DAS-

16F data acquisition board installed in an IBM AT computer. The low frequency cut-off

at 500 Hz was used to remove the background noise of the wavemaker hydraulic system.

The ambient sound spectrum from 0 to 1000 Hz is shown in figure 2.4. There are large

peaks at 28 and 56 Hz which are likely caused by machinery generated structural

vibration. The peak at 235 Hz is the fundamental frequency of the wave maker hydraulic

system, its first harmonic is evident at 470 Hz. The peak at 400 Hz is due to the noise

from the cooling fan. At frequencies > 500 Hz the ambient noise spectrum is white.

The hydrophone was located vertically at mid-depth and transversely at the center

of the channel, mounted on an L-shaped bracket pointing upstream towards the breaking

event. The bracket was supported from an overhead carriage which was set on rollers

allowing the hydrophone to be moved easily along the channel. This configuration made

it necessary to keep the hydrophone at least 2m downstream of the breaking event to

avoid vibrations caused by the surface waves striking the bracket during sampling.

Measurements of the sound produced by breaking waves in laboratory wave tanks

may be difficult to interpret because of reverberation. If the wave tank is highly

reverberant, absolute sound levels are difficult to measure because the sound is recorded

more than once as it reflects back and forth past the hydrophone. We studied this

problem in detail for our wave tank, and found that the sound measured was

predominantly radiated away from the breaking region with negligible reflections from

the endwalls of the tank. These results are discussed in section 2.3.

2,2.A Micowave Measuments

The microwave backscatter was measured with a modified X-band CW Doppler

radar model MR7/9 manufactured by Kustom Electronics. The characteristics of the

radar are summarized in table 2.6.
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RF source Gunn effect diode in a temperature compensated

tuned cavity, 10 VDC at 0.3 to 0.5 amps.

Transmit frequency 10.525 Ghz ± 25 Mhz

Transmitted power 50 mW typical

Antenna type Circularly polarized horn, 22 dB gain.

Power requirements 11 to 15 VDC at 1.8 A max.

Operating ambient 0(YC to 600C.

temperature

Mixer assembly Cartridge Schottky-Barrier mixer diode mounted

in a terminated wave guide.

Table 2.6 Kustom Electronics radar model MR7/9 characteristics.

The radar was modified by the addition of an HP model X383A variable attenuator and

a new amplifier and filter circuit. The manufacturers circuits included a 100 Hz highpass

filter and because the signals of interest included frequencies below 100 Hz we replaced

the manufacturers circuits with a new amplifier and filter circuit. The circuit included an

Analog Devices AD524 instrumentation amplifier chip and a Frequency Devices

71 1H4B highpass filter. The gain of the amplifier was set at 100 and the highpass filter

had a 3 dB cut-off frequency of 1 Hz.

The radar signal was bandpassed from 1-250 Hz and sampled at 500 Hz with the

same data acquisition system used to sample the wave gauges. The circularly polarized

radar had a 15 cm aperture conical horn, was mounted 71 cm above the still water

surface pointing in the upstream direction (looking into the advancing waves) at an

incidence angle of 650 , and produced a 3 dB spot size of 1 m at the water surface. The

far-field of the aperture defined by the criterion, R >> 2d2 / X , is 1.53 m, where d is the
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diameter of the horn (Ulaby et al, 1981). The centerline range was 1.68 m and the range

variation over the 3dB spot was 1.42 m to 2.08 m to the still water surface.

The transmitted power of the radar was monitored during each run with a HP

432A power meter and a X486A temperature compensated thermistor mount. There were

no significant variations observed in the transmitted power. To avoid unwanted returns

from the downward pointing sidelobes of the radar, a panel of 40 dB radar absorbing I
material was placed beneath the horn. Absorbing material was also used to block

reflections from the wave gauge mounting frame of the wave gauge placed upstream of

the radar.

The linearity of the radar system was tested using a set of three metal spheres of

diameters 15 cm, 30 cm and 44 cm as targets. The spheres were suspended on nylon I
string from overhead and swung as pendulums to provide moving targets of known radar

cross-section. The radar was mounted horizontally, aimed at the centerline of the spheres

at the lowest point in their trajectories. Panels of radar absorbing material were mounted

to cover the wave channel and shield each side of the swinging spheres to minimize the

effect of multipath reflections. The procedure was based on the well known equation for I
a monostatic radar,

P=G2%2 "  2.13Pr= (41r)3R4 21

where P. is the received power, P, the transmitted power, G is the antenna gain and CT is H
the radar scattering cross-section (Ulaby et al, 1981). In this case P,, G and a are

constants and therefore, log P, = log4(a / R4 ) + constant. We varied the range R, from 2

m to 16 m and the radar cross-section a had three values of 0.018 m 0.073 and 0.16 m2  I
corresponding to the areas of the three metal spheres.

I
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At each value of R and a, three runs were performed by swinging the spheres and

sampling the data on a HP 3561A signal analyzer. The returned power was taken as the

average over the three runs. The calibration data are shown in figure 2.5 where 10

log(P,) is plotted versus 10 log(a/R 4). The data agree with the radar equation, eq. 2.13,

for o/R' > -45 with scatter of 42 dB. At larger ranges the scatter increases because of the

effect of multipath reflections which could not be avoided because it became impractical

to shield a large enough area of the laboratory with absorbing material. The data follow

the radar equation for received voltage amplitudes from 20 mV to 320 MV. The lower

limit was due to the effect of multipath reflections at larger ranges and the upper limit

was due to the practical limit on the radar cross-section (i.e. larger spheres than the 44.4

cm diameter one used were not practical within our laboratory set-up). At larger voltage

amplitudes (up to 4 volts) the radar frequency response was found to be uniform from 1

Hz to 2 kHz. The backscattered radar signals, during the breaking experiments, were

typically in the range ±2 volts and the largest voltage amplitudes observed were 4 volts.

Therefore, we concluded that the radar behavior was linear over the range of signal

amplitudes observed during the experiments.

Wave Disnaim g

The surface displacement was measured with an array of resistance wire wave

gauges, positioned upstream and downstream of the breaking event. Rapp and Melville

(1990) have demonstrated that when the surface displacement variance is used to

estimate the momentum flux of weakly non-linear, slowly varying, two-dimensional,

deep water waves, errors of the order of 5% are incurred. We would expect errors of
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similar magnitude in these experiments because our wave packet parameters are very

similar to theirs. The center frequencies and bandwidths were the same but in our work

the water depth was 0.38m compared to their depth of 0.6m. The surface displacement

variance 12 is given by,

T
12 = fT2(t)dt 2.14

0

where il(t) is the surface displacement and T is the length of the sampling interval.

Plots of the dimensionless wave height variance, T12 / j 02 versus the

dimensionless distance (x-xb)k for the three wave packets are shown in figures 2.6, 2.7

and 2.8. The three plots each show the incipient breaking event, an event with an

intermediate slope corresponding to either a small plunging or spilling breaker and a

steep event corresponding to a large plunging wave. The incipient events slope almost

uniformly because of losses due to friction. The steeper events show rapid decreases in

the dimensionless variance near the theoretical break point.

The fractional dissipation D due to breaking, is given by,

D = -= =j 2.15
1102 1 12 J

where 102 and 1f2 and are the surface displacement variances upstream and downstream

of the event. Figure 2.9 shows the dissipation D, as a function of the wave slope

parameter S. The data collapse onto a single curve similar to the data presented by

Melville and Rapp (1985). There is a threshold at S = 0.23, below which no breaking

occurs. In the range, S = 0.23-0.28, the dissipation increases rapidly reaching a plateau at
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Figure 2.6 The surface displacement variance 12 normalized by the reference upstream I
surface displacement variance 71.2 plotted versus the dimensionless distance
along the wave channel, x is the distance along the channel measured from
the mean position of the wave paddle, xb is the theoretical focal point and k,
is the wavenumber of the wave packet center component. Data is for wave
packet PI: V, S--0.226; 0, S--0.254; 0, S=0.263.
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Figure 2.7 The surface displacement variance _12 normalized by the reference upstrear
surface displacement variance 11. 2 plotted versus the dimensionless distance
along the wave channel, x is the distance along the channel measured from
the mean position of the wave paddle, Xb is the theoretical focal point and kc
is the wavenumber of the wave packet center component. Data is for wave
packet P2: V, S=0.221; 0, S--0.244; 0, S--0.312.
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Figure 2.8 The surface displacement variance 12 normalized by the reference upstream
surface displacement variance 11.2 plotted versus the dimensionless distance
along the wave channel, x is the distance along the channel measured from
the mean position of the wave paddle, xb is the theoretical focal point and k,
is the wavenumber of the wave packet center component. Data is for wave
packet P3: V, S--0.218; 0, S=0.240; 0, S---0.320.

II
92



0.4

0.3 o

A °  •

D 0.2 A 0

0.1 - 0

no single multiple breaking

breaking events events

0.0 1I 
0.20 0.25 0.30 0.35 0.40

S

Figure 2.9 The fractional dissipation of wave packet energy as a function of the slope
parameter S: 0, PI; *, P2; A, P3. The variability of the data was typically
less than the symbol size.
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D = 0.30 and then remains approximately constant for S > 0.28. For values of S < 0.23 1
the dissipation is approximately constant at 0.10, consistent with theoretically predicted

losses due to friction (Rapp and Melville, 1990).

I
2U2 Microwave Str

A typical radar time series and the corresponding Doppler spectrum are shown in

figure 2.10. The breaking events were found to be associated with the higher frequency

components of the signal, which in figure 2.10a occur in tb- interval 2.5s - 3.2s. The

spectrum in figure 2.1Ob has a well defined minimum at 50 Hz which was typical for all

events observed. In figure 2.11 a set of radar spectra, for time series bandpass filtered I
from 1-250 Hz and sampled at different locations along the channel are shown.

In figure 2.11 the spectra at 9.5m, 10m and 10.5m have considerable energy

above the ambient levels for frequencies <50 Hz. This energy is not associated with the

breaking wave because it was also observed at these locations for lower amplitude non-

breaking waves. Similar behavior was observed for the two other wave packets as well,

which led us to conclude that for the wave frequencies used in these experiments, the

backscattered microwave power due to breaking corresponded to frequencies in the range I
50-250 Hz. The energy below 50 Hz is likely due to the backscatter from the orbital

motions of the waves or from capillary waves near the crest of steep but unbroken wave.

In figure 2.12 a set of radar time series, bandpass filtered from 50-250 Hz and a

matching hydrophone time series, bandpass filtered from 500-10,000 Hz, are displayed.

In figure 2.13 a series of photographs, matching the radar and acoustic time series of I

I
I
I
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I Figure 2. 10 (a) Time series of the radar signal band pass filtered from 1-250 Hz for
packet P1 with S = 0.254. (b) Power spectrum of time series in (a).
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Figure2.11 Radar Doppler spectra at various x-locations for packet P1 with S = 0.254,
the radar time series were band pass filtered from 1-250 Hz.
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Figure 2.12 Bottom tace is a hydrophone time series band pass filtered in the range 500
Hz- 10 kHz, upper traces are radar time series at various x-locations, band
pass filtered in the range 50-250 Hz, for packet P1 with S = 0.254. The V
mark the times corresponding to the photographs in figure 2.13.
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figure 2.12, show the evolution of a breaking wave with time 2. The mean water surface I
elevation is marked by the horizontal tape and the tick marks denote 0.5m intervals. The

centerline of the radar antenna pattern is marked by the angled tape above the mean

water level.

In figure 2.13, photograph I (x=8m, t=1.12s), the unbroken wave crest is

downstream of the radar centerline, there is no acoustic signal and the amplitude of the I
radar signal is very small. In II (x=8.5m, t=1.2s) the unbroken crest is slightly

downstream of the radar centerline, there is still no acoustic signal and the radar signal

amplitude is large. The large backscattered signal is probably due to specular reflection

from the steep forward face of the wave which is located just downstream of the center

of the beam but still within the 3dB beamwidth. The wave is still unbroken and no sound I
has been produced in III (x=9m, t=1.32s), the steep forward face of the wave is directly

in line with the centerline of the radar beam and the radar signal amplitude is at a

maximum. The beginning of sound production coincides with IV (x=9.5m, t=l.69s), the 3
wave has begun to break, the crest is in line with the center of the radar beam and the

radar signal amplitude has begun to decrease. The wave is breaking vigorously in V

(x=10m, t=2.03s) and the acoustic signal amplitude is large. In photographs VI, VII and

VIII the wave is actively breaking and both the radar and acoustic signal amplitudes are

decreasing with time. In VII the crest is at the centerline of the radar beam , the acoustic

signal amplitude has decreased to 50% of the maximum and the radar signal amplitude is

35% of its maximum.

These photographs and time series clearly show that a large portion of the

backscattered microwave power associated with breaking is due to scattering from the

2 The data in figure 2.12 and the photographs in figure 2.13 were taken with a water I
depth of 0.364m compared to 0.38m which was used for the bulk of the experiments.
This was necessary because at a depth of 0.38m the wave crest was hidden from view
behind the upper steel beam of the wave tank. We observed no significant differences
between the radar and acoustic signals at the two depths.
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Figure 2.13 Photographs of a breaking wave matching the data in figure 2.12. Each
photograph corresponds to one radar time series and the time the photograph
was taken is marked in figure 2.12 with a V above the matching radar time
series.
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steep forward face of the wave prior to the start of active breaking and sound generation.

They also show that the majority of the sound energy produced by breaking occurs

during the early stages of active breaking, see figure 2.13 V. In the latter stages, figure

2.13, VII and VIII , the bubble cloud is still clearly visible but sound amplitudes have

decreased significantly.

The more energetic breaking events covered an area larger than the area

illuminated by the radar. In order to obtain a single measure of the backscattered power

from each event and to eliminate the influence of the antenna, it was necessary to take

radar measurements at a number of positions along the channel. At each location the

time averaged radar cross-section a (x) was calculated from,

T

Cx W f(x,t) dt 2.16
0

where T is the length of the sample and o(x,t) is the time series of the radar cross-section

as a function of both x and t. Two examples of the time averaged radar cross-section as a

function of position along the channel are shown in figure 2.14a. Both events shown are

typical, with a (x) increasing from zero to a well defined peak and then decaying

towards zero as x increases.

The peak frequency is defined as the frequency of the maximum value of the

Doppler spectrum. It is a measure of the velocity of the dominant scatterers present in

the illuminated area during the sampling interval. In figure 2.14b the peak frequency,

corresponding to the data in figure 2.14a, is plotted. It was calculated from the Doppler

spectrum of the radar signal bandpassed from 50-250 Hz. The maximum peak

frequencies for the two events plotted in figure 2.14b are close to the phase velocities of

the center components for their respective wave packets, see Table 2.3.
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Figure 2.14 (a) Time averaged radar cross-section as a function of x. (b) Peak frequency
(Hz) of the radar Doppler spectrum as a function of x. 0, PI, S = 0.254; s, 1
P3, S= 0.385; -0- and -*- on (b) denote the center component phase speeds
for P and P3 respectively. Each data point is averaged from 3 runs at each
location; radar data were band pass filtered in the range 50-250 Hz. The
typical variability of the data between runs is shown by the scatter bars.
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233 Acoustic n

The acoustic field is dominated by the modal structure present in the wave tank.

If the tank sidewalls and bottom are assumed to be rigid and the free surface a pressure

release surface the mode shapes are given by,

q; (z) = s (2m - ')7z m= 1,2,...,co 2.17

P(y) = cos [W] n =O,1,...,cz 2.18

where p,.(z) is the vertical eigenfunction, z is the vertical coordinate,m h is the water

depth, "n(y) is the horizontal eigenfunction, y is the transverse coordinate and W is the

tank width (Brekhovskikh and Lysanov, 1982). The mode shapes are composed of

combinations of one horizontal and one vertical eigenfunction. The first six vertical and

horizontal eigenfunctions are illustrated in figures 2.15 and 2.16. The cut-off frequencies

of the modes are given by,

FC - + (k ;) 2.19

where F is the cut-off frequency in Hz, k,, is the vertical wavenumber and ky is the

transverse wavenumber. In table 2.7 the modes with cut-off frequencies less than 10 kI-Iz

are listed.
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Figure 2.16 Horizontal eigenfunction shapes; n is the horizontal mode number.
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Horizontal Vertical Theoretical
mode number mode number cutoff

n m frequency (Hz)
0 1 990
0 2 2960
0 3 4930
0 4 6910
0 5 8880
1 1 2210
1 2 3566
1 3 5310
1 4 7190
1 5 9100
2 1 4070
2 2 4940
2 3 6320
2 4 7960
2 5 9720
3 1 6010
3 2 6630
3 3 7710
3 4 9100 3
4 1 7960
4 2 8430
4 3 9310
5 1 9920

Table 2.7 Acoustic modes and their theoretical cutoff frequencies

I
A typical acoustic spectrum for a breaking wave and the spectrum of the

background noise are shown in figure 2.17. There is energy above the background levels i
across the entire spectrum, but the majority of the energy is between 2200 Hz and 4500

Hz. The cut-off at 2200 Hz is most prominent and was clearly evident in the spectra of

all events. It is not clear why the lowest order mode with m = 1, n = 0 and a cut-off

frequency of 990 Hz is not observed.
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Figure 2.17 Upper curve is the acoustic spectrum for packet P1 with S = 0.254; lower
curve is the spectrum of the background noise. A, mark locations of the
cutoff frequencies.
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We investigated the influence of reverberation on the acoustic measurements. I
Two hydrophones were positioned at mid-depth in the tank, several meters downstream

of the breaking location, separated by a distance Ax in the longitudinal direction. The

acoustic signal from a breaking wave was then recorded simultaneously using both

hydrophones and the phase and time delay between them was calculated.

In figure 2.18 and 2.19 the coherence, y2y(f), and the phase spectrum, 0,y(f), for a

run with S=0.263 and Ax=l.15m are shown. The coherence is defined by,

=2y(f) =- G (f) G1 2 f  2.20

where Gxy(f) is the cross-spectral density function of the two time series x(t) and y(t), I
G1 x(f) and Gyy(f) are the autospectral density functions of x(t) and y(t) respectively. The

phase spectrum is given by, I
Oy(f) = tan-1 rCxy(f) 2.21

xy 1c 1,(f)

where QxY(f) the quad-spectrum and Cxy(f), the co-spectrum are defined by,

G1 y(f) =Cxy(f) -jQ.Y(f) 2.22 I
I

(Bendat and Piersol, 1986). From figure 2.18 it is seen that where the coherence is high

the phase spectrum is ordered and continuous. The positive slope of 01Y(f) indicates that

y(t), which corresponds to the hydrophone closest to the event, leads x(t) which is

consistent with the acoustic energy propagating downstream away from the breaking I
location.
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Figure 2. 18 Coherence 7,y2(f) of two hydrophone signals, S = 0.263 and the separation
distance between the hydrophones Ax = 1.15 m.
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Figure 2.19 Phase spectrum 0O1Y(f) of two hydrophone signals, S = 0.263 and the
separation distance between the hydrophones Ax = 1. 15 m.
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The data from the pair of hydrophones was digitally processed to obtain the time

delay between the two signals. The processing consisted of bandpassing the two signals

in a narrow band over which the coherence was high and then rectifying and lowpassing

to obtain the envelopes of the two signals. The two envelopes were then cross-correlated

and the time delay found by locating the maximum in the cross-correlation sequence.

Using the time delay and the distance Ax between the two hydrophones the group

velocity was calculated. The group velocities for the modes of the wave tank can be

computed using the following equation:

CS = C (1.0- (Ff)2)' 2.23

where C. is the group velocity, C the phase speed, Fthe cut-off frequency (cf. eq. 2.19)

and f the frequency (Brekhovskikh and Lysanov, 1982). In figure 2.20 the theoretical

curves given by eq. 2.23 and the group velocities obtained from the time delay estimates

are compared. Except for the one outlier at 5500 Hz the agreement is good and the time

delays obtained showed that the signal from the hydrophone closer to the breaking event

leads the other signal as expected. The data points estimated using the time delay

technique were at frequencies where the two signals were significantly correlated, that is

had a coherence exceeding 0.5.

To study the acoustic attenuation along the channel, hydrophone measurements

were taken at a number of positions downstream of the breaking event. Figure 2.21

shows a set of data from our earlier experiments, which were reported in Melville et al

(1988), showing the attenuation of the mean square acoustic pressure, pT(x), where

T
p2 (x) = fp(x,t)2 dt 2.24

0
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Figure 2.21 Mean square acoustic pressure as a function of x. All data are for P I: 0, S
= 0.286; 0, S = 0.274; A, S = 0.263; A, S = 0.254; , S = 0.249; 0,S =

0.247; V, S = 0.244; V, S = 0.241; 0, S = 0.237; *, S = 0.226. Each
data point is the average of 5 runs and the typical variability of the data
between runs is shown by the scatter bars.
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where p(x,t) is the acoustic pressure, and T is the duration of the sampling interval. The I
attenuation rate is approximately constant for a given slope, S, and at a given x location

the mean square pressure increases with increasing S. In the present study hydrophone

measurements were taken over a range of 4m in the x direction for one third of the

events, and over a range of 2 m for the remaining events. Extrapolating over twice the

distance from the sampling location of the hydrophone to the wavemaker paddle or to the I
endwall showed that the sound had decayed to negligible levels before returning to the

hydrophone location.

The results for the attenuation of the acoustic signal along the tank, the slope of

the phase spectrum and the sign and magnitude of the group velocity results all

demonstrate that the acoustic measurements were not corrupted significantly by

reflections or excessive reverberation. The relative phase of the two signals at

frequencies at which the coherence is high and the time delay estimates for the entire I
signals confirm that the acoustic energy was propagating away from the breaking

location. I
2.4 EprclS an d Correlations

A single measure of the backscattered microwave power was obtained by

integrating the time averaged radar cross-section a (x), along the channel in x. Defining

the radar cross-section as,

1. f Y(x) .x 2.25
L e

0

I
I
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where L. is the length of the longest event measured, T is the sampling time and ; (x) is

the time averaged radar cross-section. The radar cross-section has units of length

squared and is most naturally scaled by the wave packet center component wavenumber,

k . In figure 2.22 the scaled radar cross-section ok?, is plotted as a function of the slope

parameter, S. The data collapses onto a single curve and there is a linear correlation

between the dimensionless radar cross-section and the wave slope.

A dimensionless mean square pressure can be defined by scaling with (pc2) 2 ,

Pd = (pC) 2  2.26

where p is the density of water and c, is the phase speed of the center frequency

component. We chose to use p2 (x) measured at 7m downstream from the breaking

location in calculating Pd. In figure 2.23 the dimensionless mean square pressure, Pd, is

shown as a function of the slope parameter, S. The data falls onto a single curve and a

linear correlation is again evident.

It was of interest to see if the radar and hydrophone signals were correlated. The

dimensionless radar cross-section, ak2, and the dimensionless mean square pressure, pd,

are plotted in figure 2.24. A strong correlation is evident except for one outlying point

which remains unexplained. The experimental data for this outlier at Pd = 10-9 and ok? =

0.5 has been verified by repeating the complete experimental run for this data point.

The microwave and acoustic signals were observed to correlate with the

dissipation. In figure 2.25 the dimensionless radar cross-section is plotted as a function of

dissipation. It increases linearly as D varies from 0.10 to 0.25 and is independent of D

for ak2 > 0.15, with the data falling between 0.25 and 0.30. The dimensionless mean

square pressure is plotted as a function of D in figure 2.26, it increases linearly as D
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increases from 0.10 to 0.25 and it is independent of D for Pd > 10-8, with the data falling N
between 0.25 and 0.30

The duration of the hydrophone signal was measured by visually determining the

beginning and end of sound production from the acoustic time series. The measurements I
were converted to a dimensionless time scale, TC , by multiplying by the radian frequency

of the center component of the wave packet. The correlations of the mean square

pressure and the radar cross-section with the duration are shown in figures 2.27 and 2.28.

There is some scatter in the data but, with the exception of one or two outlying points,

the dimensionless radar cross section and the dimensionless mean square pressure are

approximately proportional to the dimensionless duration.

2J Diun

The results presented above show that the backscattered microwave power and I
the radiated acoustic energy correlate with the wave slope and the energy dissipation due

to breaking over a range of wave parameters. The correlation is strongest at wave slopes

within the range commonly observed in ocean waves, S < 0.30. We also found that the

backscattered microwave power and the radiated acoustic energy were correlated.

The observation that a large portion of the backscattered microwave power I
precedes the onset of sound production and visible breaking has several implications.

One is that the backscatter from breaking is strongly influenced by the geometry of the

wave prior to breaking. If, following Phillips (1988), we consider the backscatter as the

overall contribution from the family of surface configurations present during breaking,

we note that the configurations occurring just prior to breaking may be the dominant 3
ones. Another implication is that the unsteadiness of the breaking process is important

I
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and therefore the large cross-sections we measured prior to impact would not be observed H
in quasi-steady breaking (cf. Banner and Fooks, 1985). 3

During breaking we observed that the peak frequency of the Doppler spectrum

increased and approached a value corresponding to a velocity within 10% of the phase I
speed of the center component of the wave packet. Field observations have shown that

the speed of the scatterers during breaking approaches that of the phase speed of the I
dominant ocean waves and this is consistent with our results. (Keller, Plant and I
Valenzuela, 1981; Ewell, Tuley and Home, 1984). Keller et al (1981) also reported that

the bandwidth of the Doppler spectrum was drastically increased by breaking and that it

could easily be increased by as much as a factor of two.

The bandwidth of the Doppler spectrum, B, is defined as the square root of the I
second central moment, and is given by, 3

B= f(f. ")2 G(f)df 2.27

T0 !
where f is the frequency, f is the centroid frequency and G(f) is the magnitude of the

radar Doppler spectrum. The bandwidth for the event with S--0.254, matching the

spectra shown in figure 2.11, is plotted in figure 2.29. We see that the bandwidth is 10 3
Hz at locations where the backscattered power is negligible (7.5m, 8m and 1 lm) and is

increased by a factor of 2.5 to 25 Hz at the locations of large backscattered power. These

results are consistent with the field observations of Keller et al (1981). 3
Our results show that the backscattered microwave power and the radiated

acoustic energy both increase as wave slope and wavelength are increased. This is 3
consistent with Phillips' (1988) hypothesis that the radar return from longer waves should

be more intense. It is also consistent with Farmer and Vagle's (1988) result, which I
I
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S = 0.254. Data correspond to the spectra in figure 2.11.
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showed that the acoustic strength of individual breakers increased with wind speed.

Jessup et al (1990) found that the average radar cross-section of an individual sea spike I
may be independent of the friction velocity of the wind, u.. This result is difficult to

compare to our laboratory measurements because the relationship between u. and our

wave slope parameter is complicated. The dominant wave slope in the field is a function

of both u. and the wave age defined by u./ c , where c is the phase speed of the waves.

In Jessup et al (1990) the radar spot was approximately 2m in size and the typical

dominant surface wavelength was 50m. It may be that the sea spikes they observe in the

field are due to specular reflection as the local wave slope within the illumination area I
becomes sufficiently steep. If this is the case once the surface waves are sufficiently long

and steep to create an area as large as the radar spot, the signal may saturate and further

increases in wave slope or wavelength would not increase the power returned in an

individual sea spike. In our laboratory experiments the radar spot size was

approximately 1m and typical surface wavelengths were 1.5m. Therefore our results are I
not affected by saturation of the backscattered signal and we observe a strong

dependence on both wave slope and wave length.

The experiments were conducted in fresh water and this raises the issue of how

applicable our results are to remote sensing of the ocean. The major difference between

fresh water and sea water breaking waves is that the bubbles generated in sea water I
persist longer (Medwin and Daniel, 1990). This has a minimal effect on the microwave

signal because we observed that the geometry of the pre-breaking wave dominates and

that the duration of the backscattered signal is of the order of the wave period. Medwin

and Daniel (1990) have found that the sound radiated by small scale spilling breakers in

fresh water and sea water is essentially the same. They state that the issue of bubble I
persistence is not important because the sound generated by breaking waves is from

pulsating bubbles which radiate sound for only a few milliseconds after they are formed

at the surface. We conclude that the differences between fresh and salt water breaking
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waves are unimportant for these types of measurements and that the results presented

here should apply to remote sensing of the ocean surface.

The acoustic energy radiated by a breaking wave can be estimated using the

following equation,

EF =a AmTp 2.28

where TO is the sampling interval and m is a factor used to account for the modal

structure in the wave channel. We kept the sampling hydrophone at the center of the

channel cross-section for our experiments, so we had a point measurement of the acoustic

pressure at each x location. The modal factor m was used to compensate for the fact that

the mean square pressure may not be constant across the channel. To obtain m,

experiments were carried out in which the hydrophone was moved vertically and

transversely, and the variation of p2 was measured. The variation of p2 in the

transverse and vertical directions are shown in figures 2.30a and 2.30b for packet P, with

S = 0.263. The modal factor is given by,

a/w2
f±J dsI

m = 
2.29

m (7(S=O))

where s equals either y or z and a equals either the depth or the width of the channel

depending on whether the vertical or transverse variation is of interest. The average

value of m for both the vertical and transverse directions was found to be, m = 0.84.

This value was then assumed to be constant for other values of the experimental

parameters. This is a reasonable assumption because the hydrophone was located 7m
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downstream of the breaking event, in the acoustic farfield (kr >> 1) where the properties

of the waveguide would tend to dominate time averaged quantities such as p2 . As a

result, the functional form of the variation of p across the channel would not vary as

the wave slope was changed, giving a constant value for m.

In order to estimate the total acoustic energy radiated, a measure of the amount of

acoustic energy radiated upstream of the event was also required. Figure 2.31 shows the

mean square acoustic pressure upstream and downstream of one event for packet P2

with S=0.263. This plot shows that the same amount of energy was radiated upstream as

downstream. Therefore the value of E. calculated from equation 2.28 was multiplied by

a factor of two to obtain an estimate of the total acoustic energy radiated away from the

breaking region.

The wave energy dissipated is approximated by,

EL =1pgCbT. T 2.30

where T, is the sampling interval, C. is the group velocity of the center component, b is

the channel width and "12 is the surface displacement variance dissipated due to breaking

(cf. equation 2.15. Figure 2.32 shows the estimated total acoustic energy radiated scaled

by (kch) "2 versus the energy dissipated by the breaking wave. The correlation produced

by this scaling suggests that shorter breaking waves radiate more acoustic energy per unit

of mechanical wave energy dissipated. The fraction of dissipated wave energy which is

radiated as sound is of order 10-.
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Chapter & MeasnwLur e of 1 Sound enerated b a][ nd Three-Dimensional

raking Wa I
This chapter reports on two series of laboratory experiments in which the sound

generated by breaking waves was measured. The first series of experiments measured I
the sound generated by two-dimensional breaking waves in a wave channel equipped

with a single paddle wavemaker located in the R.M. Parsons Laboratory at the

Massachusetts Institute of Technology. The second series of experiments measured the

sound generated by three-dimensional breaking waves in the forty eight paddle wave

channel at the Offshore Technology Research Center (OTRC) at Texas A&M University. I
The two-dimensional breaking experiments were conducted primarily to

investigate the low frequency sound generated by breaking waves. In an earlier set of

experiments described in chapter 2, it was necessary to high pass filter the hydrophone 3
signal at 500 Hz to remove the noise from the wavemaker hydraulic system. In these

experiments the hydrophone was mounted downstream of the breaking locations and I
therefore sound at frequencies below the cut-off frequency at 2200 Hz were severely

attenuated. Therefore the correlations obtained from that data set were for frequencies >

2200 Hz.

In the two-dimensional breaking experiments described in this chapter the

problem of noise from the wavemaker hydraulic system was eliminated by shutting off I
the system prior to sampling the acoustic signals. Several relays were installed on the

on/off switch of the hydraulic system which allowed the system to be shutoff under

computer control. The wave generation computer was programmed to send a digital

pulse which caused the relays to trip, shutting off the hydraulic system 1.5 s prior to the

start of data sampling. To avoid cutting off the lower frequency signals the hydrophones I
were placed directly under the breaking events. Therefore measurements of the low
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frequency sound uncontaminated by noise from the wavemaker hydraulic system and

unattenuated by propagation through the waveguide were possible.

The three-dimensional breaking experiments at OTRC were conducted for two

reasons. First, to investigate if three-dimensional effects are important by comparing the

results of the three-dimensional experiments to those of the two-dimensional

experiments. Second, to measure the sound generated by breaking waves of considerably

large scale. Extrapolating laboratory measurements to make quantitative predictions

about the dynamics of large scale ocean surface waves is difficult. At OTRC it is

possible to generate breaking waves with wavelengths approximately three times larger

than the breaking waves generated at MIT. This is a significant increase in scale and

should permit the results to be interpreted with more confidence regarding their

applicability to ocean surface wave scales.

3.1 rimental Proedre Two-Dimensionalka

The two-dimensional experiments were conducted in a steel-framed glass-walled

wave channel 25 m long, 0.76 m wide filled with 0.6 m of fresh water. A schematic of

the experimental equipment and the wave channel is shown in figure 3.1. The channel is

equipped with a single computer-controlled piston wave generator and the breaking

waves were generated using the same technique as outlined in section 2.1.1 . An IBM

YT computer equipped with a Metrabyte DAS 20 multifunction board was used to

control the wavemaker system. The interval between breaking events was 5 to 6 minutes

to allow the surface oscillations to decay to negligible amplitudes. The waves were

absorbed at the far end of the channel by a wooden beach of slope 1:10 covered by a 50

mm thick layer of "hogs hair" (Wollastic Fibre material supplied by F.P. Woll &

Company 5216 E. Comly St., Philadelphia, Pa.) The amplitude and phase of the transfer

function, shown in figure 3.2, were measured using a procedure similar to the one

133



microwave X-band
absorber radar

Rada ydwatee r surf ac

0.38 m

Syste I

AATmAqliitfierige

Wave Rada andHydrphoI

Fi ~Gu enceatic drwigomantereainve tp n lnve bto)o h

25 m x 0.76 m x 0.60 m wave channel at MrT. The configuration of theI
experimental equipment is also illustrated.

134



6

> 5

4 -

3 I

0.5 

000.0 0

4-" -0.5 0

-i.0 -

-1. 0 0

0.0 0.5 1.0 1.5 2.0I f (H z)
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frequency, f (Hz) (E. Lamarre, 1991).
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described in section 2.1.1 . The amplitude and phase of the wave packets were adjusted 1

to compensate for the influence of the transfer function. In these experiments , Af/f, and

Xbk were held constant at 1.0 and 24.6 respectively and the slope, S (S is defined in

equation 2.8) was varied. Table 3.1 lists the characteristics of the three wave packets

used in these experiments.

Wave Packet W1  W2  W3

Center frequency, fc (Hz) 0.78 0.88 0.98

Theoretical break point, Xb (M) 9.25 7.58 6.25

Center component wavenumber, k, 2.66 3.25 3.93

Center component phase speed, c, (m/s) 1.84 1.70 1.57 1

Table 3.1 Wave packet characteristics; Af/fC = 1.0 and x = 24.6 for all I
wave packets.

L. Surface Dispcme Me mnt I
The surface displacement was measured in an earlier series of experiments in

which void fraction measurements were made for the identical wave packets (Lamarre

and Melville, 1991). The surface displacement measurements were made with the same

resistance wire wave gauges and electronics as those described in 2.1.2. The calibration

procedure and measurement technique were identical to those described in 2.1.2. I
3.L2 Sound Mesure m1

The underwater sound measurements were made with a set of omnidirectional

International Transducer Corporation model ITC 1089E spherical hydrophones. A

typical frequency response calibration plot for the ITC 1089E is shown in figure 3.3. 

I
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Figure 3.3 A plot of the typical frequency response of an ITC 1089E hydrophone.
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Transfer Characteristics

Voltage Gain
Fixed steps, dB -10, 0, 10, 20, 30, 40, 50, 60
Continuously variable, dB 0 to -10

Gain Accuracy
Fixed step, +/-dB 0.2

Frequency Response, -1 dB i
Gain, -10 dB to +30 dB I Hz to 80 kHz
Gain, +40, +50 dB I Hz to 60 kHz
Gain, +60 dB I Hz to 40 kHz

Amplitude Linearity, %FS < 1.0
Harmonic Distortion, % < 1.0
Input Impedance, Nominal

Resistive, megohms 1000
Capacitive, pF 35, max

Input voltage, Max., volts rms 5, divided by gain for all settings
Filtering, Internal See Section 6.0

Ouriut Characteristics

Output Impedance, Nominal Ohms 50 i
Load Impedance, Minimum

Resistive, ohms 10,000
Capacitive, pF 1000 max

Output current, Max., mA rms 3
Output Noise, 1 Hz to 50 kHz

Referred to input, battery
operated at gains of +30 to
+60dB

200 pF source 5 uV, max.
1000 pF source 3 uV, max.

I
Table 3.2 The frequency response and output characteristics of the Wilcoxon model

AM-5 amplifiers.

I
I
I
I
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The response is flat to within +1 dB from 100 Hz to 35 kHz. The manufacturer did not

calibrate these particular units at frequencies < 100 Hz but they had done so for other

units and found that the response was typically flat down to approximately 10 Hz. The

signals were amplified with Wilcoxon model AM-5 amplifiers set at 60 dB gain. The

specifications and frequency response of the AM-5 amplifiers are listed in table 3.2. The

acoustic signals were sampled digitally at 20 kHz using an HP RS/25C personal

computer and an R.C. Electronics ISC-16 digital to analog board with 8 channels of

simultaneous sample and hold (SSH) capability. The start of sampling was triggered

under software control by switching one of the digital ports of the DAS-20 board

installed in the wave maker control computer from low to high and connecting this signal

to the trigger port of the ISC-16 board. The signals were bandpass filtered from 20 Hz to

10 kHz with Frequency Devices model 874P8B-3 digitally programmable highpass

filters and model 844P8B-5 low pass filters. The specifications for the highpass and low

pass filters are listed in table3.3.

Filter Specifications

844P8B-5 Low pass filter
4 pole Buttwi worth

Digitally programmable from 200 Hz
51.2 kHz in 200 Hz steps.

Frequency response amplitude decreases
at 24 dB per octave outside the pass band.

Pass band ripple .+0.05 dB.

874P8B-3 fHighpass filter
4 pole Butterworth

Digitally programmable from 10 Hz
2560 Hz in 10 Hz steps.

Frequency response amplitude decreases
at 24 dB per octave outside the pass band.

Pass band ripple -0.5 dB.

Table 3.3 Specifications of 844P8B-5 low pass and the 874P8B-3
highpass filters

139



I

The hydrophones were located in the center of the channel at a depth of 37 cm

from the free surface. They were mounted on a submerged frame made of 1/2 inch

stainless steel rods which had rubber stoppers installed on the ends of the rods. The

frame was then wedged tightly in place against the glass walls of the channel. This I
allowed the hydrophones to be placed directly beneath the breaking events without

introducing large signals due to frame vibrations.

Measurements of the sound in air were made using a Shure SM81 cardioid

condenser microphone. The microphone's frequency response is flat (±+1 dB typically)

from 20 Hz to 20 kHz. The frequency response and the directional characteristics of the

SM81 are shown in figure 3.4. The microphone signal was amplified by 40 dB with a

Symetrix SX202 dual microphone preamplifier which also supplied power to the I
microphone. The frequency response of the SX202 is _10.5 dB from 20 Hz to 20 kHz.

The complete specifications for the SX202 can be found in table 3.4. The microphone

was mounted vertically pointing downwards 50 cm above the still water surface directly

above the most energetic part of the breaking event. The signal was bandpass filtered

from 20 Hz to 10 kHz using the same Frequency Devices filters as those used to filter the I
hydrophone signals. The signal was then sampled at 20 kHz using the HP RS/25C and

the ISC-16 A/D board.

31U YidC Mermcnts

I
Video recordings were made of all of the experimental runs. The location of the

video camera and a schematic of the recording equipment is shown in figure 3.1. The I
video camera was a black and white NEC model TI-23A 1/2 inch format CCD camera

with a 1/1000 second shutter speed. The video recorder was a Panasonic model AG- U
6300 VHS video cassette recorder. A DATUM model 9300 IRIG-B time code

generator/translator was used to insert a time base accurate to within ± 1 milliseconds

I
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Figure 3.4 The upper plot is a typical frequency response of a Shure SM81 microphone.
The curve labelled flat corresponds to the setting used in these experiments.
The lower plots are typical polar plots of the directional characteristics of a
SM81 microphone at various frequencies.
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Inputs
Type ............................ low-Z balanced.

transformerless
Input impedancec.................. >3k ohms
Maximum input level............. + 14.dBV (with pad)I
Connector ............................. XLR-3

Clip Indicators .....................red LED's, lirc 4dB below clipping

Frequency Response .................. 20Hz to 20kHz, +0dB, -1dB

THD ........................................... 007% (f12z OdBm, 6000)
.01% (1kHz. + 24dBm, 6000)

Signal to Noise Ratio................. 95dB (.50dB V, 1500)

EIN ............................................l 28dBm (1500)I

Max. Gain.................................. 60dB

Min. Gain .................................. 20dBI

Outputs
Type ..................................... low-Z
Output impedance ................ 500 balanced

1000I unbalanccd
Maxout (6000) ..................... + 24dBm balanced

+ 18dBrn unbalanced
Connectors ........... .......... 1/4'TRS balanced

1/4* TS unbalanced

Table 3.4 The specifications of the Symetrix model SX202 microphone pre-amplifier.
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onto the video image. The wavemaker control computer triggered the time code

generator to start when the first digital wave packet data point was sent to the wavemaker

control system. The VCR was turned on and off remotely by the wavemaker control

computer.

3 Two-Dimensional Breaking: ReIlts

3.2I D n

The fractional dissipation (eq. 2.15) was obtained by measuring the surface

displacement variance (eq. 2.14) upstream and downstream of the breaking event. In

figure 3.5 the fractional dissipation is plotted as a function of the wave packet slope, S.

The data for the three wave packets do not collapse onto a single curve like the data for

the constant slope wave packets used in the experiments of chapter 2 (see figure 2.9).

Rapp and Melville (1990) showed that for deep water breaking the dissipation depended

primarily on the wave slope, S and was not a function of kh , if Af/f, and xbk, were held

constant. In their experiments using constant amplitude wave packets tanh(kch) = 0.96,

0.99, 1.00. For constant slope wave packets the energy is concentrated at the lower

frequencies, as is evident in figure 3.6 which shows the frequency spectrum of wave

packet W, . For the three wave packets W1, W2 and W3 the centroid frequencies are

0.58, 0.65 and 0.71 Hz respectively. If we use the centroid frequency to characterize the

constant slope wave packets then the tanh(kh) = 0.78, 0.84, 0.88 for the three packets,

where kd is the wavenumber of the centroid frequency component. Clearly, tanh(kh) is

not constant and it is not close to 1.0, and therefore the dissipation may depend on the

parameter kdh. The dissipation data plotted in figure 3.5 show that at the same slope the

longer or lower frequency wave packets dissipate proportionately more energy. This

may be because the longer waves are feeling the effects of the finite depth to a greater
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Figure 3.5 The fractional dissipation D as a function of the wave slope paramneter, S.
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Figure 3.6 The frequency spectrum of wave packet W1 . The units of the spectral density
are arbitrary. x marks the location of the centroid of the spectrum.
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degree and scaling by kch should account for this effect. In figure 3.7 the fractional I
dissipation scaled by kdh is shown plotted versus the slope and the data collapse

reasonably well onto a single curve.

The glass wave channel acts as a waveguide for underwater sound propagation.

If the glass walls and bottom are assumed to be rigid and the water surface a pressure

release surface the mode shapes are defined as in equations 2.17 and 2.18. The mode

cut-off frequencies are given by equation 2.19 and are tabulated in table 3.5. I
The hydrophones were placed directly beneath the breaking events to avoid

cutting off the lower frequency signals. The microphone was placed directly above the

breaking events 50 cm above the still water surface to maximize the signal to noise ratio.

A typical hydrophone and microphone time series and the matching spectrographs, for

packet W2 with S = 0.544, are shown plotted in figures 3.8 and 3.9. The envelope of the I
hydrophone time series contains two maxima, one at t = 0.47 s and a second at t = 0.75 s.

Evidence of this structure is seen in the hydrophone spectrograph where spectral levels

increase rapidly at t = 0.47 s corresponding to the first envelope maximum. The second

envelope maximum is seen in the spectrograph where levels rise from a minimum at t =

0.6 s to a maximum at t = 0.75 s and then decay with time back to the background level. I
The envelope of the microphone time series has four maxima and the microphone

spectrograph contains four bands of higher spectral levels at times matching the envelope

maxima. 3

I
I
I
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Figure 3.7 The fractional dissipation D scaled by k. the wavenumber of the centroidal
component and the water depth, h as a function of the slope parameter, S.
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Figure 3.8 The upper plot is a time series of the upstream hiydrophone signal band pass
filtered from 20 Hz to 10 kIz for packet W2 with S = 0.544. The lower plotI
is a spectrograph of the time series in the upper plot. 48 spectra with a
bandwidth resolution of 39 Hz are shown plotted. They were computed by
dividing the time series into 144-512 point segments which overlapped 171 I
points, windowing with a Blackman-Harris window and computing FF~s
which were averaged over every 3 segments. Each color corresponds to a 5I
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Figure 3.9 The upper plot is a time series of a microphone signal band pass filtered from
20 Hz to 10 kHz for packet W2 with S = 0.544. The lower plot is a
spectrograph of the time series in the upper plot. 48 spectra with a
bandwidth resolution of 39 Hz are shown plotted. They were computed by

dividing the time series into 144-512 point segments which overlapped 171
points, windowing with a Blackman-Harris window and computing FFTs
which were averaged over every 3 segments. Each color corresponds to a 5
dB re 1 jiPa2 increment in spectral level.
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Horizontal Vertical Theoretical
mode number mode number cut-off frequency

n m (Hz)
0 1 625
0 2 1875
0 3 3125
0 4 4370
0 5 5620
1 1 1240
1 2 2160
1 3 3300
1 4 4500
1 5 5730 1
2 1 2230
2 2 2850
2 3 3790
2 4 4870
2 5 6020
3 1 3270
3 2 3720
3 3 4480
3 4 5430
3 5 6480
4 1 4330 3
4 2 4680
4 3 5300
4 4 6120
4 5 7070

Table 3.5 Acoustic modes and their theoretical cut-off frequencies for the i
0.76 m wide 0.6 m deep wave tank. U
The first maximum in the hydrophone envelope corresponds to a time 3

immediately after the initial impact of the wave crest on the free surface as it plunges

over. The second maximum corresponds to either the break up of the large volume of air 3
contained in the cylinder formed by the plunging wave crest or to the impact of a

secondary jet of water ejected downstream as the crest plunges through the free surface. I
Both processes are occurring simultaneously and it is difficult to distinguish between the
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two. The first maximum in the envelope of the microphone time series occurs at the

same time as the first maximum in the hydrophone time series and is also due to the

initial impact of the plunging wave crest. The second microphone maximum occurs at

the same time as the second hydrophone maximum but its duration is much shorter. The

third and fourth maxima in the microphone envelope do not correspond to any similar

feature in the hydrophone signal.

The microphone signals are biased to processes which produce sound at or near

the water surface. It has been shown by Prosperetti and Lu (1988) that air bubbles which

burst at the water surface radiate sound into the air but that very little sound penetrates

into the water. Therefore it is possible that the microphone was receiving signals from

bursting bubbles and surface agitation which were not detected by the hydrophones.

Conversely, it is also possible that the hydrophones received signals produced by

processes occurring too deep in the water column to be detected by the microphone. The

slightly longer duration of the microphone signal may be due to bubbles which are no

longer radiating sound into the water but do radiate sound into the air as they rise back to

the water surface and burst.

In figures 3.10, 3.11 and 3.12 averaged frequency spectra, plotted as the pressure

spectrum level, of the upstream and downstream hydrophones and microphone signals,

respectively for packet W, are shown. The spectra were averaged over 5 repeats and a

Bartlett smoothing window with a width of 9 was applied to give 80 degrees of freedom.

The pressure spectrum level is the average sound pressure level in a frequency band and

it is defined as,

PSL= 10 log GlaJ- 10 log(BW) 3.1
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Figure 3.10 Frequency spectra of the signal from the upstream hydrophone for wave 3

packet W1 with slope, S increasing from 0.288 to 0.512 in 0.032 increments.
Pressure spectrum level, PSL in dB re 1 jiPa2/Hz. Each spectrum is the
average of 5 repeats and was smoothed in the frequency domain with a 9
point Bartlett window to produce an estimate with 80 degrees of freedom.
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Figure 3.11 Frequency spectra of the signal from the downstream hydrophone for wave
packet W, with slope, S increasing from 0.288 to 0.512 in 0.032 increments.
Pressure spectrum level, PSL in dB re 1 .PaVIHz.Each spectrum is the
average of 5 repeats and was smoothed in the frequency domain with a 9
point Bartlett window to produce an estimate with 80 degrees of freedom.
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Figure 3.12 Frequency spectra of the signal from the microphone for wave packet W1

with slope, S increasing from 0.288 to 0.512 in 0.032 increments. Pressure
spectrum level, PSL in dB re I p.Pa2/Hz. Each spectrum is the average of 5
repeats and was smoothed in the frequency domain with a 9 point Bartlett
window to produce an estimate with 80 degrees of freedom.
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where G(f) (Pa2) is the autospectral density function and BW (Hz) is the bandwidth

resolution of the computed autospectral density function. There are eight spectra plotted

in each figure and they correspond to wave slopes from 0.288 to 0.512. The lowest slope

of 0.288 is the incipient breaking case for which no breaking occurs. The spectrum for

the incipient case is the lowest spectrum in each figure and should be considered the

background noise level. Waves of larger slope generally produced spectra with larger

amplitudes although some of the spectra do overlap, particularly for the hydrophone data

in figure 3.10. The hydrophone spectra in figures 3.10 and 3.11 show clear evidence of

the modal properties of the wave channel. As was the case in the experiments presented

in chapter 2 there is no evidence of the lowest cutoff frequency at 625 Hz corresponding

to the combination of the, n = 0, horizontal mode and the, m = 1, vertical mode. The

first cutoff frequency seen in the spectra is at approximately 1300 Hz and this

corresponds to the second lowest mode of, n = 1, and, m = 1, which has a theoretical

cutoff of 1240 Hz. The microphone spectra in figure 3.12 show no evidence of any

modal structure and from 500 Hz to 10 kHz the spectral slope varies from -1.4 to -2.0 or

-4 to -6 dB per octave.

These spectra demonstrate that there is significant low frequency sound produced

by breaking waves. The spectra of the of the incipient event, S = 0.288 and the next

highest slope event, S = 0.320, are almost identical for frequencies less than 500 Hz.

When the slope is increased to 0.352 the level of low frequency sound increases

dramatically. This increase in slope is where the transition from spilling to plunging

breaking occurs. As the wave slope increased further, from 0.352 to 0.512, the levels of

low frequency sound continued to increase. Similar results were observed in the sound

spectra for the other two wave packets W2 and W3 .

The variance of the hydrophone and microphone signals were calculated as a

function of time in the frequency bands 0 to 1 kHz and 1 kHz to 10 kHz. Plots of the

pressure spectrum level, PSI.., as a function of time in these two bands for wave packet

155



I

W, are shown in figures 3.13, 3.14 and 3.15. At the lowest slope (incipient event) the I
PSL of the two hydrophones and the microphone do not increase significantly above the 3
background levels. There is some variation of the PSL of the downstream hydrophone

signal for the incipient event plotted in figure 3.14h, but this is not due to breaking. In

figures 3.13g and 3.14g which correspond to the two hydrophone signals for a wave

slope of 0.320, the PSL in the higher band increases above the background levels for I
approximately 0.5 s but the PSL in the lower frequency band remains at the background

level. The lower frequency band PSL does show a very slight increase above the

background levels at 1.1 s in figure 3.15g for the microphone signal. The lowest slope

event to show significant increases of the PSL in the 0 to 1 kHz band was the breaking

event with S = 0.352 shown in figures 3.13f, 3.14f and 3.15f. This is consistent with the I
earlier observation that spectral levels increased dramatically at lower frequencies when

the slope was increased from 0.320 to 0.352 because this change in slope caused the

transition from spilling to plunging breaking. The PSL in both bands increases

simultaneously which is also consistent with the fact that the sound levels were seen to

increase simultaneously across the entire spectrum in the spectrographs plotted in figures I
3.8 and 3.9.

In order to examine the relationship between the sound and the dynamics of

breaking the mean square acoustic pressure was calculated in the two frequency bands

from 0 to 1 kHz and from lkHz to 10 kHz over the entire signal duration. In figures

3.16, 3.17 and 3.18 this mean square acoustic pressure in the two bands, for the two I
hydrophone signals and the microphone signal, is shown plotted versus the wave slope

for all three wave packets. The trend is similar in all three plots. The log of the mean I
square acoustic pressure of the hydrophone signals in the lower frequency band, plotted

in the upper frame, is approximately proportional to the wave slope. The longer

wavelength packets produced significantly more low frequency sound energy. This is

most evident in the upstream hydrophone data in figure 3.16. The log of the mean square
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Figure 3.13 The pressure spectrum level PSL (dB re 1 pPa2/l-z) of the signal from the
upstream hydrophone in two frequency bands as a function of dine for
packet W1 . Each data point is the average of 5 repeats of the event. (a) S =
0.288 (b) S = 0.320 (c) S = 0.352 (d) S = 0.384 (e) S = 0.416 (f) S =
0.448 (g) S = 0.480 (h) S = 0.512. 0, 20Hz-I kHz; 0, 1-10 kHz.
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Figure 3.15 The pressure spectrum level PSL (dB re 1J±Pa2fHz) of the signal from the
microphone in two frequency bands as a function of time for packet W3.
Each data point is the average of 5 repeats of the event. (a) S = 0.288 (b) S
= 0.320 (c) S = 0.352 (d) S = 0.384 (e) S = 0.416 (f) S = 0.448 (g) S=
0.480 (h) S = 0.512. 0, 20Hz- I kHz; *, 1- 10 kHz.
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Figure 3.16 The mean square acoustic pressure p2 (Pa2) of the signal from the upstream

hydrophone calculated over the entire signal duration in two frequency

bands as a function of the slope parameter S. The upper plot is for the

frequency band 0-1 kHz and the lower plot for the band 1-10 kHz. Each
data point is the average of 5 repeats of the measurement and the error bars
indicate the 95% confidence limits. 0, WI; e, W2; V, W 3"
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Figure 3.17 The mean square acoustic pressure p2 (Pa 2) of the signal from the

downstream hydrophone calculated over the entire signal duration in two
frequency bands as a function of the slope parameter S The upper plot is
for the frequency band 0-1 kHz and the lower plot for the band I-10 kHz.
Each data point is the average of 5 repeats of the measurement and the error
bars indicate the 95% confidence limits. o, Wl; , W2; V, W3"
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Figure 3.18 The mean square acoustic pressure p2 (Pa2) of the signal from the

microphone calculated over the entire signal duration in two frequency

bands as a function of the slope parameter S. The upper plot is for the

frequency band 0-1 kHz and the lower plot for the band 1-10 kHz. Each
data point is the average of 5 repeats of the measurement and the error bars
indicate the 95% confidence limits. 0, WI; 0, W2; VI W3"
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acoustic pressure of the microphone signal in the lower frequency band increased rapidly

I as the slope increased in the range S = 0.3 to 0.4. For larger values of S the mean square

acoustic pressure tended toward a maximum value. The longer wavelength packets

produced significantly higher levels in the lower frequency band of the microphone

signal as well.

The log of the mean square acoustic pressure in the higher frequency band

increased rapidly with slope for all three instruments in the range S = 0.3 to 0.40. As the

slope increased further the mean square acoustic pressure reached a plateau at S = 0.4

and remained essentially constant for larger values of S. The microphone signal showed

the strongest dependence on the packet wavelength with significantly higher values of the

i mean square acoustic pressure for the longer packets. The hydrophone data did not show

a similar dependence on the packet wavelength at the higher frequencies.

The mean square acoustic pressure in the same two frequency bands is plotted

I versus the fractional dissipation for the two hydrophone signals and the microphone

signal in figures 3.19, 3.20 and 3.21. The log of the mean square acoustic pressure in the

Ilower frequency band correlates almost linearly with the dissipation for the hydrophone

data however there is more scatter in the data for the downstream hydrophone plotted in

figure 3.20. The log of the mean square acoustic pressure in the lower frequency band of

the microphone signal in figure 3.21 increases more rapidly with dissipation for D in the

range 0.05 to 0.1. For D > than 0.1 the increase is less rapid but the correlation is

approximately linear. There is no consistent dependence on the wavelength of the packet

for either the hydrophone or the microphone low frequency mean square acoustic

pressure data.

SThe log of the mean square acoustic pressure in the higher frequency band

increases rapidly with dissipation in the range D = 0.05 to 0.1 for all three instruments.

IFor larger values of D the rate of increase is slower and for the hydrophone data the

mean square acoustic pressure reaches a maximum at D = 0.15 and remains
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Figure 3.19 The mean square acoustic pressure p2 (Pa2) of the signal from the upstream I
hydrophone calculated over the entire signal duration in two frequency

bands as a function of the fractional dissipation D. The upper plot is for the

frequency band 0-1 kHz and the lower plot for the band I-10 kHz. Each
data point is the average of 5 repeats of the measurement and the error bars
indicate the 95% confidence limits. 0, WI; 0, W2; V, W3"
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Figure 3.20 The mean square acoustic pressure p2 (Pa2) of the signal from the
downstream hydrophone calculated over the entire signal duration in two
frequency bands as a function of the fractional dissipation D. The upper plot
is for the frequency band 0-1 kHz and the lower plot for the band I-10 kI-Iz.
Each data point is the average of 5 repeats of the measurement and the error
bars indicate the 95% confidence limits. 0, WI; 0, W2; V, W3"
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Figure 3.21 The mean square acoustic pressure p2 (Pa 2) of the signal from the U
microphone calculated over the entire signal duration in two frequency

bands as a function of the fractional dissipation D. The upper plot is for the
frequency band 0-1 kHz and the lower plot for the band 1-10 kHz. Each

data point is the average of 5 repeats of the measurement and the error bars
indicate the 95% confidence limits. 0, W1; 0, W2; V, W3"
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approximately constant for D > 0.15. The mean square acoustic pressure for the

microphone data continues to increase slowly for D > 0.15. Again, there appears to be

no consistent dependence on the wavelength of the packets except perhaps in the

microphone data.

. £ riment 1P r oceure: Three-Dimensional baking

The three-dimensional breaking experiments were conducted in a wave basin 45.7

m long by 30.5 m wide filled with 5.8 m of fresh water at the Offshore Technology

Research Center at Texas A&M University. Measurements were made of the sound

produced by breaking waves and the surface wave displacement. Plan and elevation

views of this facility are shown in figure 3.22 and a schematic of the wave maker control

system and experimental equipment is drawn in figure 3.23. The channel was equipped

with forty eight independently controlled hinged wave paddles along the 30.5 m wide

endwall. The paddles were hinged at a point 3 m below the still water level. The waves

were absorbed by a series of metal screens installed vertically extending from the tank

bottom to several meters above the still water level. The tank was equipped with a

motorized instrument platform which spanned the width of the tank and could be

accurately positioned to within +0.25 cm.

The wave paddles were controlled by a Digital Equipment Corp. workstation

which fed data to three 80386 PC computers each of which controlled 16 paddles. The

software used to generate the breaking waves is proprietary and was supplied by the

National Research Council of Canada to OTRC. As a result the details of the software

and the exact methodology used to generate the waves is not available. For these

experiments the interval between breaking events was 2 minutes. Within this time

interval the surface oscillations had decayed enough so that the repeatability of

successive events was not affected. Three-dimensional breaking waves were produced
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Figure 3.22 A drawing of a plan (top plot) and elevation view (bottom plot) of the three- i
dimensional wave channel at the Offshore Technology Research Center at
Texas A&M University. The layout of some of the experimental equipment
is also shown.
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Figure 3.23 A schematic of the experimental equipment set-up and the wavemaker
control system.
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with the "bulls eye" pattern by focusing wave components spread over a given frequency I
band similar to the scheme described for two-dimensional breaking in section 2.1.1 . The

amplitude of the waves was varied by varying the gain in the wave generation program.

The gain simply scaled the wave packet proportionally without altering the form of the

signal sent to the wave paddles. The wave amplitude is a maximum at the center of the

tank and decreases closer to the sidewalls. The phase of the paddle motion is adjusted so I
that all forty eight paddles generate waves which are focused towards a prescribed

location on the centerline of the tank. This produces circular wave crests which curve

concavely toward an observer stationed downstream of the wave paddles and the wave

field is symmetric about the centerline. I
S.. Surface Displacement I

The surface displacement was measured with a series of capacitance wire wave

gauges. The wave gauges and the signal conditioning electronics were built and operated I
by the staff at OTRC. The surface displacement data was sampled at a rate of 200 Hz per

gauge using an 80386 PC computer equipped with a Metrabyte DAS-16 board. Five

uve gauges spaced at 2.4 m intervals were mounted from the instrument platform, the

position of each gauge is shown in figure 3.22. Measurements of the surface

displacement were made at 10 ft. (3 m) intervals along the length of the basin. The I
gauges consisted of Teflon coated wire mounted on 1/4 inch stainless steel frames. The

gauges were calibrated by sampling the still water level in 7.5 inch (19 cm) increments

over a 30 inch (76 cm) range. The relationship between the wave amplitude and the

output voltage was linear and the gauges were calibrated once a day. The linear term in

the calibration equation varied by approximately ±2% from one day to the next. I

I
I
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.i3.2 ea eMments

Underwater video recordings were made of some of the experimental runs. The

video camera was mounted on an L-shaped bracket made of 2 inch aluminum pipe. The

bracket was clamped to the railing of the instrument platform so that the camera was

submerged approximately 2 m below the still water surface. The angle between the

vertical and horizontal tubes was adjusted so that the camera was looking upward at an

angle of approximately 300. Figure 3.22 shows the approximate location and orientation

of the video camera. The video camera was a black and white NEC model TI-23A 1/2

inch format CCD camera with a 1/1000 second shutter speed. The video recorder was a

Panasonic model AG-6300 VHS video cassette recorder. A DATUM model 9300 IRIG-

B time code generator/translator was used to insert a time base accurate to within ±1

millisecond onto the video image. The wave gauge data acquisition computer monitored

the wave paddle position signal of a single paddle and triggered the start of the time code

generator and video recorder when the signal reached a prescribed level. After one

minute the wave gauge data acquisition computer turned off the video recorder and time

code generator and then waited for the next wave to be generated.

3,2. Sound M rments

The underwater sound measurements were made with two omnidirectional B&K

model 8105 hydrophones and two B&K model 2635 charge amplifiers The sound in air

was measured with a Shure model SM81 microphone and Symetrix model SX202

microphone preamplifier. This equipment is described in detail in sections 2.1.3 and

3.1.2. The three channels of data were sampled digitally at 40 kHz per channel using an

ALR 33 MHz 80386 PC and the ISC-16 analog to digital board described in section
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3.1.2. The wave gauge data acquisition computer provided a trigger through the digital I
port of the DAS-16 board which triggered the ISC-16 board to begin sampling.

Three different signal conditioning configurations were used. A schematic

drawing of the three configurations labelled set-up 1, 11 and II is shown in figure 3.24.

The signal conditioning of the microphone signal remained the same throughout the

entire experiment. The microphone signal was amplified by 40 dB using a Symetrix 1

SX202 preamplifier and then low pass filtered at 10 kHz, see set-up I in figure 3.24. In

set-up I the hydrophone signals were notch filtered from 200 to 340 Hz, high pass

filtered at 10 Hz and then low pass filtered at 20 kHz. In set-up I the hydrophone

signals were bandpass filtered in the frequency range 1 kHz to 20 kHz. For set-up III the

hydrophone signals were bandpass filtered from 10 Hz to 200 Hz.

3. Three-Dimensional Breaing: Rgults I
3i Srfac Displacemen t

The time series of the surface displacement for the largest wave with gain = 0.70

measured on the centerline of the tank at six locations are plotted in figure 3.25. These

time series are typical of dispersive wave packets which are focused to break at a

prescribed location downstream. In figure 3.25a, which is a plot of the surface 5
displacement at a location close to the wave paddles the wave packet is composed of

shorter waves followed by longer waves. As the packet propagates away from the I
paddles it becomes shorter as the longer waves catch up to the slower shorter waves. At

the focal point the packet length and period are at a minimum. The focal point or

location of breaking is very close to 18.6 m and this time series is plotted in figure 3.25c.

Linear theory predicts that the wave packet period will be T = 2/Af, and that the number

of waves in the packet will be N = 2f]Af at the focal point (Rapp and Melville, 1990). In 1
I
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Figure 3.25 Time series of the surface displacement 11(t) (cm) for a three-dimensional
breaking wave with a gain, A = 0.70, along the centerline of the channel at
six locations. The wave paddles are located at x = 0 mn and breaking occurs
at 18.6 m: (a) 12.5 m (b) 15.5 m(c) 18.6 m (d) 21.6 m (e) 24.7 m(f) 27.7I
M.
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figure 3.25c the wave packet period is approximately 2 s and there is only one wave in

the packet. Using this information the frequency bandwidth Af predicted by linear theory

is, Af = 1 Hz and the center frequency, f, = 0.5 Hz.

The frequency spectra of the six time series in figure 3.25 are plotted in figure

3.26. The spectrum for the time series closest to the paddle is shown in figure 3.26a and

the peak spectrum level occurs at 0.53 Hz and the bandwidth is approximately 1 Hz in

agreement with linear theory. Energy is lost from the wave height spectrum due to

breaking and also because downstream of the focal point the waves propagate away from

the centerline towards the sides of the channel. This can be seen in figure 3.27 which is a

contour plot of the surface displacement variance, defined in equation 2.14, for the wave

with gain, A = 0.70. Upstream of the breaking location, for x < 18.6 m., the variance

shows that the wave energy tended to be focused toward the centerline. Then

downstream of breaking, for x > 18.6 m the wave energy propagates more rapidly away

from the centerline.

It was not possible to measure ihe energy dissipation for the three-dimensional

breaking waves studied at OTRC. One of the reasons for this was that the fractional

amount of energy dissipated by three-dimensional breaking events is likely much smaller

and therefore harder to detect than for two-dimensional breaking. This is because

typically when a three-dimensional wave breaks only a section of the wave crest actually

breaks. The three-dimensional breaker is steeper near the center and breaking first

begins at this location and then spreads laterally across the wave parallel to the crest.

Therefore the three-dimensional wave may only break along a small fraction of its crest

unlike the two-dimensional breakers which always break across the entire crest. If

breaking occurs across only a fraction of the crest then the fractional energy dissipation

would be expected to be much lower than the case when breaking occurs across the entire

crest.
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Figure 3.26 Frequency spectra of the surface displacement data plotted in figure 3.25. I
The dotted line in figure (b) to (f) is the reference upstream spectrum at

18.6 m: (a) 12.5 m (b) 15.5 m (c) 18.6 m (d) 21.6 m (e) 24.7 m (f) 27.7 m.
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IFigure 3.27 Contour plot of the surface displacement variance (cm2) averaged over the
entire signal duration. The x axis is the distance along the channel from the
wave paddles and the y axis is the distance across the channel. y = 0 is the
centerline of the channel and the wave paddles are located at x = 0 m.
Waves propagated from left to right in this coordinate system.
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Another reason the energy dissipation could not be measured was that the metal I
screen wave absorbing beach did not absorb the incident wave energy very effectively 3
and the resulting surface oscillations persisted in the tank for up to 20 minutes. The time

between successive breaking events was 2 minutes and while this did not appear to 3
significantly affect the repeatability of the breaking events it did impair our attempts to

measure the energy dissipation. The measurement of energy dissipation by three- I
dimensional breaking waves is clearly a difficult task requiring extensive resources and

planning. The primary motivation for the experiments at OTRC was to study the sound

radiated by three-dimensional breaking waves and compare this to the measurements

from the two-dimensional breaking experiments at MIT. Comparisons between the two

data sets were still possible because the three-dimensional waves could be characterized I
by the gain which is proportional to the wave amplitude and slope.

3,42 |un

The effect of acoustic reflections from the bottom and the sidewalls of the wave 3
tank at OTRC were found to be negligible. The hydrophones were mounted

approximately 1.9 meters below the water surface 3.9 m above the tank bottom. For this 3
configuration a sound pulse originating at the surface and then reflected off the tank

bottom would be reduced in power by 18 dB due to spherical spreading alone. I
Measurements were made of the sound reflected from the tank bottom and sidewalls. 5
The two hydrophones were configured as illustrated in figure 3.22, with one acting as a

transmitter and the other as a receiver. Pulses at 10 kHz were transmitted and the 3
received time series was analyzed to determine the amplitude of the bottom and sidewall

reflections. The direct path signal and the signal reflected from the water surface were I
clearly visible in the time series. At later times there were several reflected pulses just

visible above the background noise. The ratio of the sound power contained in the direct

I
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and surface reflected pulses to that in the later bottom and sidewall reflected pulses was

19 dB. From these results it was concluded that the effects of reverberation in this wave

tank were negligible.

The hydrophones were placed directly beneath the breaking events to avoid the

effects of any modal cut-off frequencies. The cut-off frequencies Fc are given by,

I L ( 2 +ky2)1/2 3.2

Iwhere k, is the vertical wavenumber and Iy is the horizontal wavenumber (see also

Iequation 2.19). The OTRC wave channel is 45.7 long, 30.5 m wide and 5.8 m deep and

therefore kZ >> ky whether ky is calculated using 45.7 m or 30.5 m. Therefore Icy can be

Ineglected and the lowest three cut-off frequencies for this tank are 65 Hz, 194 Hz and

324 Hz for sound propagating across or along the channel.

In figures 3.28, 3.29 and 3.30 typical time series and spectrographs of signals

jreceived by the two hydrophones and the microphone are plotted. This data is for the

largest amplitude wave with gain, A = 0.70. The signals were conditioned using set-up I

Idescribed in figure 3.23. The underwater sound due to breaking is almost hidden in the

background noise in the two time series in figures 3.28 and 3.29. However, it is easily

detected in the spectrographs where the spectral levels over the entire frequency range

Ifrom 0 to 20 kHz increase 10 to 20 dB above the background noise levels at t = 1.4 s

when the wave plunges over and impacts the free surface.

I The microphone time series has a much better signal to noise ratio and the onset

of breaking and sound production is clearly observed in the time series in figure 3.30 at

= 1.4 s. The large amplitude low frequency signal which begins at t = 1.8 s was caused

I by the reverberation of the signal inside the laboratory. The frequency of this signal is

approximately 9 Hz and it remains constant as the wave amplitude is decreased. A 9 Hz

I
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Figure 3.28 The upper plot is a time series of the acoustic pressure from the downstream

hydrophone for a three-dimensional breaking wave with gain, A = 0.70. 3
The signal was conditioned with set-up I shown in figure 3.24. The lower
plot is a spectrograph of the time series in the upper plot. 52 spectra with a
bandwidth resolution of 78 Hz are plotted. They were computed by dividing
the time series into 416-512 point segments which overlapped 128 points,
windowing with a Blackman-Harris window and computing FFTs which
were averaged over every 8 segments. Each color corresponds to a 5 dB re
1 pjPa2 increment in spectral level.
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Figure 3.29 The upper plot is a time series of the acoustic pressure from the upstream
hydrophone for a three-dimensional breaking wave with gain, A = 0.70.
The signal was conditioned with set-up I shown in figure 3.24. The lower
plot is a spectrograph of the time series in the upper plot. 52 spectra with a
bandwidth resolution of 78 Hz are plotted. They were computed by dividing
the time series into 416-512 point segments which overlapped 128 points,
windowing with a Blackman-Harris window and computing FFTs which
were averaged over every 8 segments. Each color corresponds to a 5 dB re
I IxPa2 increment in spectral level.
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Figure 3.30 The upper plot is a time series of the acoustic pressure from the microphone
for a three-dimensional breaking wave with gain, A = 0.70. The signal was
conditioned with set-up I shown in figure 3.24. The lower plot is a
spectrograph of the time series in the upper plot. 52 spectra with a
bandwidth resolution of 78 Hz are plotted. They were computed by dividing
the time series into 416-512 point segments which overlapped 128 points,
windowing with a Blackman-Harris window and computing FFTs which
were averaged over every 8 segments. Each color corresponds to a 5 dB re
1 jLPa 2 increment in spectral level.
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sound wave in air has a wavelength of 38 m and the width of the lab was approximately

38 m. The walls were made of concrete blocks and can be assumed to be rigid therefore

1/2, 1, 3/2 ... of a wavelength would satisfy the boundary conditions at each wall. The

lowest frequency which would form a standing wave between the two walls is 4.5 Hz

corresponding to a wave length of 76 m. The response of the microphone is flat down to

20 Hz and then rolls off as the frequency is decreased. As a result even if the lower

frequency, 4.5 Hz, mode were excited it is not likely that it would appear in the

microphone signal unless its amplitude was extremely large. The 9 Hz mode is also

below the pass band of the microphone but evidently it was a very large amplitude signal

and the response has not decreased sufficiently to filter it out. Similar to the underwater

sound spectrographs the spectral levels of the microphone signal increase rapidly at t=

1.4 s and the spectral levels decrease with increasing frequency.

Frequency spectra averaged over 5 repeats of the same wave amplitude and

smoothed with a 9 point Bartlett window to give 80 degrees of freedom are shown

plotted in figures 3.31, 3.32 and 3.33 for the two channels of hydrophone data and the

single channel of microphone data. The hydrophone signals were band pass filtered from

10 Hz to 20 kHz and notch filtered from 200 to 340 Hz and the microphone signal was

low pass filtered at 20 kHz. The six spectra in each figure correspond to a range in gain

of, A = 0.24 to 0.70. The lowest gain, A = 0.24, is the incipient case for which no

breaking occurs and in each figure it is the lowest amplitude spectra. The frequency

band from 200 Hz to 800 Hz in the underwater sound data is dominated by background

machinery generated noise. The two hydrophone spectra show almost no variation in

spectral levels with increasing wave amplitude in this frequency range, indicative of a

very poor signal to noise ratio. The spectra of the microphone signal also have large

spectral peaks within the same frequency range but the signal to noise ratio is much

larger.
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Figure 3.31 Frequency spectra of the signal from the downstream hydrophone 3

conditioned using set-up I (see figure 3.24) for the three-dimensional
breaking events with gains, A = 0.24, 0.40, 0.475, 0.55 , 0.675 and 0.70.
Pressure spectrum level PSL in dB re 1 l.Pa2/Hz. Each spectrum vas
averaged over 5 repeats of the same event and was then smoothed with a 9
point Bartlett window to produce an estimate with 80 degrees of freedom. 3
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Figure 3.32 Frequency spectra of the signal from the upstream hydrophone conditioned
using set-up I (see figure 3.24) for the three-dimensional breaking events
with gains, A = 0.24,0.40,0.475, 0.55, 0.675 and 0.70. Pressure spectrum
level PSL in dB re 1 j2Pa/Hz. Each spectrum was averaged over 5 repeats
of the same event and was then smoothed with a 9 point Bartlett window to
produce an estimate with 80 degrees of freedom.
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Figure 3.33 Frequency spectra of the signal from the microphone conditioned using set-
up I (see figure 3.24) for the three-dimensional breaking events with gains,
A = 0.24,0.40,0.475,0.55,0.675 and 0.70. Pressure specmum level PSL
in dB re 1 .iPa2/Hz. Each spectrum was averaged over 5 repeats of the same
event and was then smoothed with a 9 point Bartlett window to produce an
estimate with 80 degrees of freedom. 3
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The underwater sound spectra have several notable features. There is no evidence

of the modal structure in the form of cut-off frequencies in the spectra. The lowest

amplitude event for which breaking occurred had a gain, A = 0.40, and the spectral levels

for this event are 5 to 10 dB higher than those for the incipient event. There is

significant low frequency sound energy in the spectra at frequencies < 200 Hz and this

energy increased as the amplitude of the breaking event was increased. For frequencies >

1 kHz the two underwater sound spectra have an almost constant slope of -5 to -6 dB per

octave. This is the same slope as Knudsen (1948) and Wenz (1962) observed in

frequency spectra of oceanic ambient noise.

The spectra from both hydrophones have a similar shape and are approximately

the same level above the incipient event spectrum. However, the spectra of the data from

the hydrophone mounted closer to the wave paddles, plotted in figure 3.32, show a much

smaller variation in level as the wave amplitude increases. This is caused by the fact that

the different amplitude waves break at different locations and sDectral levels would be

expected to vary as l/r 2 (r = range) because of spherical spreading. As the wave

amplitude was increased the waves broke progressively further downstream. Knowing

the locations of the two receivers and assuming the sound generated by breaking

originates at the still water surface the mean square signal levels for f > 1 kHz can be

used to calculate the location of the sound source. This was done for the five breaking

events and the results showed that the location of the sound source for all of the breaking

events was located between the two hydrophones. The lowest amplitude event was

closer to the upstream hydrophone and as the wave amplitude increased the events

moved closer to the downstream hydrophone. These calculations were confirmed by

viewing a video taken from directly above the events which confirmed that as the

amplitude was increased the waves broke further downstream.

The spectra of the sound data from the microphone, plotted in figure 3.33, are

similar in character to the underwater sound spectra. The spectral peaks due to
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background noise do not dominate the spectra from 200 Hz to 800 Hz to as great an I
extent as in the case of the underwater sound spectra. There is significant acoustic 3
energy produced by breaking across the entire spectra from 10 Hz to 10 kHz. As in the

spectra of the hydrophone signal there is significant energy at f < 200 Hz and the spectral

levels increased consistently as the wave amplitude was increased. The spectra slope at

approximately -4 dB per octave in from 500 Hz to 10 kHz slightly flatter than the I
Knudsen (1948) and Wenz (1962) spectra. Tle sharp roll-off of the spectra at 10 kHz is

due to the low pass filter 1.

The variation of the mean square acoustic pressure with time, for the two

channels of hydrophone data and the single channel of microphone data are shown in

figures 3.34, 3.35 and 3.36. The lower curves are for the frequency band I kHz to 20 I
kHz and the upper curves are for the band from 0 Hz to 1 kHz. The mean square

acoustic pressure remains essentially constant for all channels in both frequency bands

for the incipient breaking event. At a gain, A = 0.40, the energy in the higher band I
increases significantly above the background levels for all three channels of data. The

first evidence of low frequency sound is seen in figure 3.35e which corresponds to the 3
upstream hydrophone and the event with a gain of, A = 0.40. As the amplitude of the

waves was increased the levels in both bands continued to increase.

The mean square acoustic pressure in the two bands, f= 0 to 150 Hz and f = 150

to 500 Hz for the three instruments was calculated and are plotted in figures 3.37, 3.38

and 3.39. These r'. ures show that the majority of the low frequency sound produced by 3
breaking is at frequencies < 150 Hz. There was almost no variation in the PSL of the

hydrophone signals in the band from 150 Hz to 500 Hz as the amplitude of the wave was I
varied. The duration of the low frequency microphone signal is longer than the 3
I It was originally planned that the microphone signal would be low pass filtered at 20
kHz. However, at the start of the experiment either the filter was set incorrectly to low
pass at 10 kHz or the filter frequency indicator dial was misaligned and showed 20 kHz
when it was actually set at 10 kHz.
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Figure 3.34 The pressure spectrum level PSL (dB re lgPa21Hz) of the signal from the
downstream hydrophone as a function of time in two frequency bands for
the three-dimensional breaking events. Each data point is the average of at
least 3 repeats of the event. (a) A = 0.24 (b) A = 0.40 (c) A = 0.475 (d) A
-0.55 (e) A = 0.625 (f) A = 0.70. 0, 10Hz-1 kHz; 0, 1-20 kHz.
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Figure 3.35 The pressure spectrum level PSL (dB re lpiPa2fHz) of the signal from the3
upstream hydrophone as a function of time in two frequency bands for the
three-dimensional breaking events. Each data point is the average of at least
3 repeats of the event. (a) A = 0.24 (b) A =0.40 (c) A = 0.475 (d) A=I
0.55 (e) A = 0.625 (f) A = 0.70. 0, 10Hz- I kHz; 0, 1-20 kHz.
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Figure 3.36 The pressure spectrum level PSL (dB re lp.Pa2/Hz) of the signal from the

microphone as a function of time in two frequency bands for the three-
dimensional breaking events. Each data point is the average of at least 3

repeats of the event. (a) A = 0.24 (b) A = 0.40 (c) A = 0.475 (d) A = 0.55
(e) A = 0.625 (f) A = 0.70. 0, 1OHz-1 kHz; 0, 1-20 kHz.
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Figure 3.37 The pressure spectrum level PSL (dB re lgPa/Hz) of the signal from the

downstream hydrophone as a function of time in two lower frequency bands
for the three-dimensional breaking events. Each data point is the average of
at least 3 repeats of the event. (a) A = 0.24 (b) A = 0.40 (c) A = 0.475 (d)
A = 0.55 (e) A = 0.625 (f) A = 0.70. 0, 10-150 Hz; , 150-500 Hz.
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hydrophone signal because of the reverberation of the signal within the laboratory

building as discussed earlier.

The mean square acoustic pressure, p2 , in the two frequency bands, 0 to 1 kHz

and 1 kHz to 20 kHz, was calculated over the entire signal duration for the two channels

of hydrophone data and is shown plotted as a function of the gain in figure 3.40. The

upper plot is for the frequency band 0 to 1 kHz and the lower plot for 1 kHz to 20 kHz.

The log of the mean square acoustic pressure in the lower band is constant for the lowest

three gains and then increases proportionally with the gain. In the higher band the log of

the mean square acoustic pressure increases rapidly when the gain increases from 0.24 to

0.40 and then increases slowly for A > 0.40. The error bars indicate the 95% confidence

limits of the data. The mean square acoustic pressure of the higher band had very little

scatter with the 95% confidence limits plotting within the symbol size. The 95%

confidence limits of the mean square acoustic pressure of the lower band is much larger,

indicating that the lower frequency signals were much less repeatable than the higher

frequency signals. If the mean square acoustic pressure is calculated for the band, f = 0

to 150 Hz, the correlation with the gain is better. This is seen in figure 3.41 where the

mean square acoustic pressure in the band from 0 to 150 Hz is plotted as a function of the

gain. The log of the mean square acoustic pressure is a minimum at A = 0.24 and then

increases at a constant rate as the gain increases to A = 0.70. The mean square acoustic

pressure in the band from 150 to 500 Hz is shown in the lower plot in figure 3.41. The

mean square acoustic pressure at the lowest and highest gains are equal and there is a

minimum when A = 0.475. The signals in this frequency range are dominated by the

background machinery noise and the observed variation of the mean square acoustic

pressure with gain is not related to the dynamics of brcaking.

The mean square acoustic pressure of the microphone signal in the two bands, 0

to 1 kHz and 1 kHz to 20 kHz, as a function of the gain is plotted in figure 3.42. The log

of the mean square acoustic pressure in the lower band is constant for the lowest three
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Figure 3.40 Mean square acoustic pressure p2 (Pa2) of the two hydrophone signals

calculated over the entire signal duration in two frequency bands plotted as a

function of the gain A. The data in the upper plot is for the frequency band
0-1 kHz and the lower plot for 1-20 kHz. Each data point is the average of
at least 3 repeats of the same event and the error bars indicate the 95%

confidence limits of the data. 0, downstream hydrophone; 0, upstream
hydrophone.
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Figure 3.41 Mean square acoustic pressure p2 (Pa2) of the two hydrophone signals
calculated over the entire signal duration in two lower frequency bands
plotted as a function of the gain A. The data in the upper plot is for the
frequency band 0-150 Hz and the lower plot for 150-500 Hz. Each data
point is the average of at least 4 repeats of the same event and the error bars

indicate the 95% confidence limits of the data. 0, downstream hydrophone;

0, upstream hydrophone.
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Figure 3.42 Mean square acoustic pressure p2 (Pa) of the microphone signal calculated

over the entire signal duration in two frequency bands plotted as a function
of the gain A. The data in the upper plot is for the frequency band 0-1 kHz
and the lower plot for 1-20 kHz. Each data point is the average of at least 5
repeats of the same event and the error bars indicate the 95% confidence
limits of the data.
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gains and then increases proportionally with the gain similar to the hydrophone data.

The log of the mean square acoustic pressure in the higher band increases rapidly with

gain in the interval, A = 0.24 to 0.55, and then less rapidly for A > 0.55. The scatter in

the lower frequency band is much larger than that in the higher frequency band as was

the case for the hydrophone data.

A video recording of the breaking events was taken from directly overhead.

Traces were made of the whitecaps at various stages of breaking for the five wave

amplitudes. The traces were digitized and are shown plotted in figures 3.43 to 3.47. The

shapes of the whitecaps are similar for all five wave amplitudes. Initially as the wave

begins to break there is a single whitecap which is formed at the very leading edge of the

plunging wave crest. As the wave continues to plunge forward, the crest near the

centerline accelerates faster than the crest near the edges. This produces a whitecap

shape like that seen in figure 3.44b and 3.47b where the dimension parallel to the

direction of wave propagation is greater at the center of the wave than at the edges. This

is because as discussed earlier three-dimensional breakers begin to break near the center

of the wave first and breaking spreads laterally across the crest as time progresses. As

the plunging crest impacts the free surface a secondary jet of water is ejected out in front

of the initial whitecap and this forms a second whitecap. This second whitecap can been

seen clearly in frame (c) or (d) in all five figures. The integrated area and the maximum

area of each whitecap was calculated and are plotted as a function of the wave gain in

figure 3.48. The integrated area and the maximum area both increase almost linearly

with the gain.
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Figure 3.43 Plan view of the whitecap generated by the three-dimensional breaking
event with A = 0.40. The time is referenced to plot (a) for which t = 0 s (b)
t=0.2 s (c)t0.47 s (d)t=0.67 s.
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Figure 3.44 Plan view of the whitecap generated by the three-dimensional breaking
event with A = 0.475. The time is referenced to plot (a) for which t = 0 s
(b) t = 0.27 s (c) t = 0.53 s (d) t = 0.8 s.
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Figure 3.45 Plan view of the whitecap generated by the three-dimensional breaking
event with A = 0.55. The time is referenced to plot (a) for which t = 0 s (b)
t =0.27 s (c) t= 0.53 s (d) t =0.8 s.
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Figure 3.46 Plan view of the whitecap generated by the three-dimensional breaking
event with A = 0.625. The time is referenced to plot (a) for which t = 0 s
(b) t=0.27s (c) t=0.7s (d) t= l.0s.

203



I
I

I (d)_ I

- I
I I I (c)

- I

I (b)I

_ _ _ I
70 (a) I

Y (ft.) 60

50 I
-10 0 10 20

X (ft.)

Figure 3.47 Plan view of the whitecap generated by the three-dimensional breakingI
event with A = 0.70. The time is referenced to plot (a) for which t = 0 s (b)
t=0.27s (c)t=0.53 s (d)t=0.8 s.
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Figure 3.48 The integrated area (ft.2), defined as sum of the area of the whitecap at the
four times corresponding to the four frames plotted in figures 3.43 to 3.47,
for each breaking event and the maximum area (ft.2), defined as the
maximum whitecap area observed for each breaking event, as a function of
gain. 0, integrated area; *, maximum area.
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Lamarre and Melville (1991) have shown that the process of air entrainment by I
plunging breakers scales with the prebreaking wave variables and that the bulk properties

of the bubble cloud evolve according to simple functions of time. They found that the

volume of entrained air decreases exponentially with time from a maximum value

corresponding to the volume initially enclosed by the plunging wave crest. Video

recordings of the two-dimensional breaking events were made for all the experimental

runs. From these recordings it was possible to measure the size of the cylinder of air

initially enclosed by the plunging breakers. This was possible for all but the lowest one I
or two amplitude breakers for each of the three wave packets W,, W2 and W3. From the

cylinder size the volume of air initially enclosed can be calculated. The volume of air

enclosed in the cylinder is plotted in figure 3.49 as a function of the wave slope, S for all 3
three packets. The volume correlates closely with slope and increases as the slope

becomes larger and as the wave packet length increases. I
The close correlation between the cylinder volume and the slope suggests that the

cylinder volume should also correlate with the fractional dissipation. In figure 3.50 the

fractional dissipation is plotted versus the cylinder volume. There is a strong correlation 3
and the cylinder volume increases linearly as the dissipation increases. This relationship

indicates that the amount of energy dissipated by breaking and the volume of air I
entrained are closely linked This coupling was first observed by Lamarre and Melville

(1991) who found that up to 50% of the energy dissipated by breaking was expended

entraining air against the buoyancy force. They measured the void faction beneath wave 3
packet W2 for 3 events with slopes, S = 0.544, 0.448 and 0.384. They observed that the

ratio of the energy dissipated by breaking to the volume of air entrained remained I
2
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Figure 3.49 The volume of air in the cylinder V (cm 3) formed by the plunging wave
crest versus the slope parameter for the 3 wave packets in the two-
dimensional breaking experiments., W1 ; @, W2; V, W3"
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Figure 3.50 The fractional dissipation D as a function of the cylinder volume V (cm 3).
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constant at approximately 0.1. From this they concluded that the initial volume of air

entrained would correlate with the energy dissipation. This hypothesis is confirmed by

the data in figure 3.50.

The mean square acoustic pressure in the two frequency bands, 0 to 1 kHz and 1

kHz to 20 kHz, for the two-dimensional breaking events is plotted as a function of the

volume of air in figures 3.51, 3.52 and 3.53 for the two hydrophone signals and the

microphone signal respectively. The upper plots in each figure correspond to the lower

band. There is considerable scatter in the data but the trends are consistent in all three

figures. The error bars denote the 95% confidence limits of the data which has been

ensemble averaged over 5 repeated runs of the same event. The 95% confidence limits in

the upper and lower bands of the microphone signal in figure 3.53 are of similar

magnitude. In the hydrophone data plotted in figures 3.51 and 3.52 the scatter is much

larger in the higher frequency band. The log of the mean square acoustic pressure in the

lower band increases as the entrained air volume increases. This is an indication of the

strong coupling between the sound radiated by breaking and the dynamics of breaking

and air entrainment. The log of the mean square acoustic pressure in the upper band

increases as the entrained air volume increases for smaller values of V, but as the

volume increases further it reaches a maximum value and then decreases in some cases.

However the large scatter in the higher frequency data from the hydrophones indicates

that these ,rends may not be statistically significant.

1.5. LoW Fequenc SR otra ksj

It was observed during the course of the two-dimensional breaking experiments

that as the wave broke a characteristic low frequency sound was emitted. The signature

of this low frequency sound is very clearly visible in the spectra of the microphone

signal. This can be seen in figure 3.54 (top plot) where a spectrograph, averaged over 5
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Figure 3.51 The mean square acoustic pressure p2 (Pa2) of the signal from the upsueam
hydrophone calculated over the entire signal duration in two frequency

bands as a function of the volume of the cylinder V (cm 3). The upper plot is

for the frequency band 20 Hz-I kHz and the lower plot for the band 1-10

kHz. Each data point is the average of 5 repeats of the measurement and the
error bars indicate the 95% confidence limits. 0, Wi; ', W2; V, W 3"
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Figure 3.52 The mean square acoustic pressure p (Pa 2) of the signal from the
downstream hydrophone calculated over the entire signal duration in two
frequency bands as a function of the volume of the cylinder V (cm 3). The
upper plot is for the frequency band 20 Hz- I kHz and the lower plot for the
band 1-10 kHz. Each data point is the average of 5 repeats of the
measurement and the error bars indicate the 95% confidence limits. 0, WI;

, 
22; 

V, W31
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Figure 3.53 The mean square acoustic pressure p (JPa 2) of the signal from the
microphone calculated over the entire signal duration in two frequency

bands as a function of the volume of the cylinder V (cM3). The upper plot is
for the frequency band 20 Hz-I kHz and the lower plot for the band 1-10
kHz. Each data point is the average of 5 repeats of the measurement and the

error bars indicate the 95% confidence limits. 0, WI; e, W2; V, W3"

I
2121



repeats, of the microphone signal for packet W3, the shortest wavelength packet, with a

slope, S = 0.48, is shown. At t = 0.4 s there is a large spectral peak, 85 dB in amplitude,

in the spectrum at approximately 130 Hz. This peak occurs immediately after the initial

impact of the plunging crest onto the free surface. In figure 3.54 (bottom plot) a

spectrograph of the upstream hydrophone for the same wave packet and slope averaged

over the same 5 repeated events is plotted. At t = 0.4 s there is a spectral peak, 100 dB in

amplitude, at approximately 130 Hz matching exactly the peak in the microphone

spectrum. In figure 3.55 another set of spectrographs for the microphone and hydrophone

signals are plotted. These are for packet W,, the largest wave length packet, with a

slope, S = 0.416. The spectral peak occurs in both spectrographs at t = 0.5 s and at a

frequency of approximately 120 Hz. These spectral peaks can be seen in the one

dimensional acoustic spectra of the microphone signal plotted in figure 3.12 where the

spectral peaks can be seen shifting from approximately 75 Hz to 200 Hz as the wave

slope decreases.

Spectrographs of the microphone signal and the upstream hydrophone were

analyzed and the characteristic frequency which occurred immediately following the

impact of the plunging crest was measured. At very low slopes, close to the incipient

slope, there was no characteristic frequency that was detectable. This is because these

low slope events were spilling breakers for which no cylinder of air is formed. The

spectral peaks were easier to detect in the microphone spectrographs. In locating the

peaks in the hydrophone spectrographs the time at which they appeared in the

microphone signal was used as a guide. With this a priori information the spectral peaks

were almost always detectable in the hydrophone signal. One reason the peaks are less

clearly visible in the hydrophone spectra is because there were several bands of low

frequency noise, one at 60 Hz and another at 200 Hz which obscured other spectral

peaks. Reverberation of the signal within the wave channel may also have made

detection of the peaks more difficult.
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Figure 3.54 Spectrographs of signals from the microphone (top plot) and the upstream

hydrophone (bottom plot) for the two-dimensional breaking event packet W3

with S = 0.48. The spectra were averaged over 5 repeats of the event and

were calculated for 32-2048 point segments overlapped by 512 points and

windowed with a Blackman-Harris window. The bandwidth resolution is

9.8 Hz. Each color corresponds to a 5 dB re 1 y.Pa2 increment in spectral
level. 3
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Figure 3.55 Spectrographs of signals from the microphone (top plot) and the upstream
hydrophone (bottom plot) for the two-dimensional breaking event packet W1

with S = 0.416. The spectra were averaged over 5 repeats of the event and
were calculated for 32-2048 point segments overlapped by 512 points and
windowed with a Blackman-Harris window. The bandwidth resolution is
9.8 Hz. Each color corresponds to a 5 dB re 1 jiPa2 increment in spectral
level.
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The frequency appeared to vary as a function of the wave slope and this is

confirmed in figures 3.56a and 3.56b where the characteristic frequency measured from

the hydrophone and microphone signals are plotted versus the wave slope for all 3 wave

packets. The frequency decreases as the wave slope increases and at the same slope the

longer wave length packets produced a lower frequency sound. The frequency of the

microphone and hydrophone signals are plotted as a function of the fractional dissipation m

in figures 3.57a and figure 3.57b. In both plots the data for all 3 wave packets collapse

onto a single curve and the frequency decreases monotonically as the dissipation

increases. The frequency increases from 75 Hz to 275 Hz as the fractional dissipation

decreases from 0.27 to 0.07 . The correlation between the characteristic frequency and

the dissipation is additional evidence of the strong coupling between the dynamics of I
wave breaking and the radiation of sound by breaking waves.

A characteristic low frequency signal %& .icii vaned with the wave amplitude was

not as clearly evident in the data from the three-dimensional breaking events. There

appeared to be no consistent variation in the lcatiua of the low frequency spectral peaks

in the spectrographs of either the hydrophone or microphone signals. However in the m

spectra of the data from the downstream hydrophone which was low pass filtered at 200

Hz a spectral peak which shifted to higher frequencies as the wave amplitude decreased

was observed. The spectra are shown in figure 3.58 and the location of the shifting

spectral peaks is marked by the inverted triangular symbols. The spectra are for the 6

wave amplitudes, A = 0.24 to 0.70. The spectral peak is located at 57 Hz for the largest I
amplitude wave, A = 0.70, and shifts to 76 Hz for the wave with, A = 0.475. At a gain,

A = 0.40, no spectral peak appears because either the mechanism which generates it is

absent at this low wave amplitude or because it is hidden in the large background noise

spectral peak centered at 100 Hz.

I
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Figure 3.56 The characteristic frequency f ( Hz) of (a) the microphone signal and (b) the
hydrophone signal for the two-dimensional breaking events plotted versus
the slope parameter S. o, W; 0, W2; V, W3"
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Figure 3.57 The characteristic frequency f (Hz) of (a) the microphone signal and (b) the
hydrophone signal for the two-dimensional breaking events plotted versus
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Figure 3.58 Frequency spectra (pressure spectrum level PSL in dB re 1 pPa2/Hz) of the
signal from the downstream hydrophone for the three-dimensional breaking
events. The gain A = 0.24, 0.40, 0.475, 0.55, 0.625 and 0.70. The spectra
were computed from data conditioned using set-up 111 and decimated to a
sampling rate of I kHz. The data was divided into 17-256 point segments,
windowed using a Blackman-Harris window, overlapped by 64 points and
averaged over 5 repeats of the events. The estimated spectra have 10
degrees of freedom and a bandwidth resolution of 3.9 Hz. V mark the
shifting low frequency spectral peaks.
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The origin of these characteristic low frequency signals in the two-dimensional

breaking events was investigated. An underwater video was taken in the wave channel at

MIT with the camera submerged at approximately mid-depth located several meters I
downstream of the breaking location pointing upstream towards the wave paddle. The

video showed that a perfectly smooth walled elliptic cylinder of air was formed as the

wave crest curls over. The cylinder of air was forced down into the water column by the

weight of the water overhead in the curling crest. A series of photographs of packet W2

with S = 0.544 showing frames of the underwater video at various times throughout the

breaking events are shown in figure 3.59. The photographs were produced by taking

photographs of a video monitor with the video recording stopped using the freeze frame I
feature of the VCR at the various times throughout the breaking process. The

photographs were taken in a darkened room with no light source other than the monitor

screen using a Minolta 7000i camera equipped with a 50 mm AF lens. The aperture was

set a F6.7, the shutter speed was 1/15 s and Kodak TMAX 100 film was used.

In frame (1) the video camera is half way out of the water and the free surface is I
seen as a horizontal line across the middle of the frame. The plunging wave crest is

visible above the free surface although it is out of focus. In frame (2) the time is

14.465 s and the plunging wave crest has just impacted the free surface. Frames (3) and

(4) show the smooth walled cylinder of air being forced down into the water column as

the wave continues to break. In frame (5) waves appear on the cylinder as it becomes I
unstable and in frame (6) the cylinder begins to break-up into smaller air bubbles. In

frames (7) and (8) the cylinder continues to break-up and the periodic instabilities seen in

frame (5) grow and form the periodic bubble cloud substructures which are visible at the

I
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Figure 3.59 A series of photographs showing the formation and subsequent break-up of
the cylinder of air formed by a plunging breaker for wave packet W2 with
S = 0.544. Frame (23) t = 0.322 s, prior to the impact of the plunging crest,
the free surface is visible as a horizontal line across the middle of the
photograph and the plunging wave crest is visible above the free surface.
Frame (24) t = 0.465 s, the crest has just impacted the free surface. Frame
(25) t = 0.532 s, the smooth-walled cylinder of air is partially visible, the
lower edge of the cylinder is the horizontal line slightly above the centerline
of the frame. Frame (26) t = 0.599 s, the smooth-walled cylinder fills the
upper half of the frame. Frame (27) t = 0.665 s, the cylinder is becoming
unstable, waves can be seen forming along the lower portion of the cylinder.
Frame (28) t = 0.699 s (29) t = 0.732 s (30) t = 0.766 s, the break-up of the

cylinder into a cloud of small bubbles continues, the waves visible in frame
(27) develop into periodic bubble cloud substructures most clearly visible in
frame (29). Frame (31) t = 0.799 s (32) t = 0.866 s, the structure of the
bubble cloud becomes finer as the bubbles break-up into progressively
smaller sizes.
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bottom of the cylinder. In frames (9) and (10) the structure of the cloud becomes finer as

the cloud breaks up into progressively smaller sized bubbles.

In figure 3.60 a series of three photographs showing the evolution of the cylinder

from the side produced using the same method as the photographs in figure 3.59 are

shown. Frame (1) shows the wave crest as it begins to plunge forward. Frame (2) shows

the crest plunging downwards and curling over and forming a cylinder. Frame (2)

matches the time for frame (1) in figure 3.59. In frame (3) the wave crest has just

impacted the free surface and this photograph matches frame (2) from figure 3.59. The

photographs from the side show the elliptic shape of the cylinder which typically had a

major to minor axis ratio of 3.

It was hypothesized that the origin of the low frequency signals was that the

cylinders of air were pulsating volumetrically, in the breathing mode. Similar to the case

of an oscillating spherical bubble the frequency of oscillation would be expected to vary

as a function of the bubble size or volume of air. In order to assess the validity of this

hypothesis the theoretical problem of an infinitely long ( the two-dimensional problem)

pulsating circular cylinder of air located immediately beneath a free surface was studied.

The pressure radiated by a single pulsating cylinder of infinite length in an

infinite fluid is given by,

irpoaUo
P(r,t) - 2 H. (kr) e-O t  3.3

where p is the density of the fluid, o is the radian frequency, a. is the equilibrium

cylinder radius, U. is the magnitude of the cylinder wall velocity, k is the acoustic

wavenumber in the fluid, r is the radial distance from the cylinder center to the receiver

location and Ho is the zeroth order Hankel function of the first kind (Morse and Ingaard,

1968, p. 357). The linearized momentum equation is,
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I
ficure .N) A ,cn-c of photographs showing a view from the side of the cylinder

fornuation for packet W, with S = 0.544. Frame (34) t = 0.266 s, the wave
crest has just begun to plunge forward. Frame (35) t = 0 333 s, the crest has

curled over and the cylinder is partially formed, this frame matches the time

of frame (23) in figure 3.59. Frame (36) t = 0.466 s, the wave crest has just
impacted the free surface and the cylinder is fully formed. this frame
matches the time of frame (24) in figure 3.59.
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where (D(r,t) is the velocity potential, P(r,t) is the pressure, p is the density of the fluid

and r is the radial coordinate. If the dependence on time is assumed to be harmonic then

eq 3.4 becomes,

1
OI(r) = P(r) 3.5

where co is the radian frequency andj = 47i. Substituting for P(r) in equation 3.5

produces the following expression for the velocity potential,

CD(r,t) = a.U H0(kr) e-Alt. 3.6

If it is assumed that kr << 1 then equation 3.6 reduces to,

C(r,t) = aoU o ln(kr) e-iMt 3.7

If the cylinder is located close to a free surface then the method of images can be

used to obtain a solution. The location of the image cylinder and the geometry of the

problem are illustrated in figure 3.61. If the pulsating cylinder is located a distance L/2

below the free surface then the image cylinder is located L2 above the free surface such

that a line joining the their two center points is perpendicular to the free surface. The

image cylinder must radiate a pressure field which is 1800 out of phase with the pressure

radiated by the real cylinder in an infinite fluid in order to satisfy the boundary condition

of p = 0 on the free surface.
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Figure 3.61 Geometry of the problem of an oscillating air cylinder located close to aI
pressure release surface.
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If kao << I and kL << I then the velocity potential for the cylinder plus its image

can be written as,

O(t) = aoUo (ln(kr) - ln(kr 2)) 3.8

where r2 is the radial distance from the center of the image cylinder to the receiver.

Using the law of cosines equation 3.8 can be rewritten as,

4)(t) = aoU o In r 3.
S n(r2+L2-2Lr cos 0)] 3.9

where 0 is the angle between a line which joins the two cylinder centers and the line

joining the cylinder center and the receiver, see figure 3.61. The kinetic energy of the

fluid motion can be calculated using a surface integral evaluated over the surface of the

cylinder,

T=- p f¢ Du.n dA 3.10
A

where A is the area of a unit length of cylinder, u is the velocity vector and n is the unit

vector normal to the cylinder's surface (Batchelor, 1967, p. 383). On the cylinder surface

u.n =a , where a is the velocity of the cylinder wall. Using equation 3.9 the surface

integral in 3.10 can be reduced to the following form,

21c

T J a. 2 (a)2  ' dO . 3.11T 2 ( -2ao2+L2-2ao2LCos(0)

0
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Integrating equation 3.11 is straightforward (CRC Standard Mathematical Tables, 1987,

p. 295) and the result is,

T =: 2[-22npa0 2 In(!)) (a)2 3.12

I
where the quantity (-27rpa 2 ln(aJ/L)) is a "generalized inertia" for the cylinder motion

(Lighthill, 1978). I

If the amplitude of the cylinder wall oscillations are assumed to be small

compared to the undisturbed value of the cylinder radius then,

IV~)-V V t t ,) I

where V(t) is the volume of the cylinder per unit length, V0 is the undisturbed volume of

the cylinder per unit length, a(t) is the radius of the cylinder and a. is the undisturbed

cylinder radius. The relative change in the gas density p. is then given by, 3
Pa - 90 = 2 ( i )- 3.141
Pgo I

where p.0 is the undisturbed gas density (Lighthifl, 1952, p. 33).

The potential energy can be calculated by assuming that the cylinder pulsates

slowly enough that the gas density pg remains uniform throughout the cylinder while

making small oscillations about the undisturbed value P.0 (Lighthill, 1952, p. 33). The

work done per unit volume to compress a gas to density p1 from the undisturbed density I
P.0 is given by,
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P dpg P dos3.15W = pgP (-dpg"]) =- 3.1

Pg

where P is the perturbation pressure about the atmospheric pressure (Lighthill, 1952, p.

13). Substituting with P = (pg - p.o)C. 2 in equation 3.15 and integrate from p.. to P.

produces an expression for the potential energy per unit volume for gas compressed from

pg. tO pg,

h = (Pg - Pgo) 2 [J 3.16

where c. is the speed of sound in the gas. Using equation 3.16 and taking the volume to

be a unit length of cylinder, V = ir a0
2 (1 m), the total potential energy of the compressed

gas in the cylinder can be written as,

1
H = (4n0 cs2) (a - a.)I .3.17

The quantity (47rp 1 ° c. 2) is a "generalized stiffness" of the cylinder motion.

The radian frequency co of the cylinder pulsations is then given by,

(, - 27rfe = stiffness _ ' 2 3.18

V inertia a. ln(L/a.)

where for air cylinders in water c. = 340 m/s, p., = 1.23 kg/m3 and p = 1000 kg/m3 and

the expression for f, reduces to,

229



I

fc 3.19 I
If a. = 0.05 m and L = 0.2 m equation 3.19 gives f, = 46 Hz. For these typical values of

a., L and f, ka0 = 0.01 and the assumption that ka0 << 1 is seen to be satisfied. Equation I
3.18 shows that the radian frequency co, is smaller than the characteristic frequency

cS / a. for density propagation across the cylinder by a factor 2p.o / p -in(7 l ao)

(Lighthill, 1978). The smallest physically realistic value of the ratio L/ao corresponds to

the case where the cylinder is just touching the free surface and then L/ao = 2. For this

value of L/aO the factor "J2p. o / p ln(lao) has a maximum value of 0.06 which indicates I
that co, << c. / a. and the assumption that the gas density in the cylinder is uniform is

shown to be plausible.

In figure 3.62 equation 3.19 is shown plotted for several values of L/ao. The

frequency varies as the inverse of the cylinder radius and as the cylinder moves closer to

the free surface, that is L/a. becomes smaller, the pulsation frequency increases. As the I
cylinder moves closer to the free surface the inertia or mass is reduced while the stiffness

remains constant therefore the frequency increases. Strasberg (1953) observed a similar

effect for spherical air bubbles oscillating near a free surface. The cylinder radius

measured from the video recordings and the pulsation frequencies figure 3.57a are

compared to the theoretically predicted values in figure 3.63. The observed cylinders I

were elliptic and therefore to compare to the theoretical equation for circular cylinders an

equivalent radius was calculated for a circular cylinder of the same cross sectional area as

the elliptic cylinders. The observed frequencies are all higher than the theoretically

predicted values. The highest theoretically predicted frequencies occur when L/a, = 2

and the observed frequencies are up to 50% higher than these predictions. I
Strasberg (1953) calculated the effect of nonspherical shape on the pulsation

frequency of air bubbles in water. He calculated the pulsation frequencies of air bubbles

I
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Figure 3.62 The resonant frequency f, (Hz) of a cylinder of air oscillating near a

pressure release surface as given by equation 3.19, evaluated for various

values of L/ao, the ratio of twice the distance between the cylinder center
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shaped as oblate spheroids and then compared these frequencies to the pulsation

frequencies of spherical bubbles of equal volumes. He found that the pulsation

frequency increased as the bubbles became more nonspherical, however the effect was

relatively small. For an oblate spheroid with a major to minor axis ratio of 3 the

pulsation frequency was predicted to increase by 5%. In order to determine whether the

effect of noncircular shape on the pulsation frequency of air cylinders was small an

approach similar to Strasberg's was used. This analysis is described in detail in appendix

C. The analysis showed that for an elliptic cylinder with a major lo minor axis ratio of 3,

which was typical of the observed cylinders, the pulsation frequency would be

approximately 3% higher than that of a circular cylinder of equal volume. Therefore the

effect of noncircular shape is very small and can be neglected.

The reason for the large discrepancies between the observed frequencies and

those predicted by the theory was investigated further. The pulsation frequency is

inversely proportional to the square root of the inertia. Therefore if the inertia of the

fluid was overestimated by the theory the predicted pulsation frequencies would be too

low. Equation 3.19 was derived for a plane free surface which is a great simplification

compared to the real geometry of the free surface during breaking, as seen in figure 3.59.

Examination of the free surface geometry indicates that the inertia or mass of the system

may be considerably less than for the case of a plane free surface. One hypothesis is that

it is only the mass of the water between the cylinder and the free surface which

contributes to the inertia of the system (Dyer, 1991). The reasoning behind this

argument is that the cylinder wall will pulsate in the direction of least resistance, towards

the free surface where, for the static problem, the only resisting force is due to the weight

of the thin layer of water which separates the cylinder from the atmosphere.

The mass contained in the thin layer of water above the cylinders was measured

for three breaking events. Traces of the free surface geometry and cylinder were made

from video recordings. One of these traces is shown in figure 3.64 for the wave packet
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W2 with a slope, S = 0.544. The cross hatched area in the figure was measured and

converted to a mass per unit length of cylinder. This was done for three breaking events

and the mass measured from the traces was compared to the theoretical inertia or mass

predicted by equation 3.12. The correction to the pulsation frequency will be

proportional to the square root of the ratio of the theoretically predicted mass to the

measured mass. The results from this analysis are tabulated in table 3.6.

Wave Wave Measured Theoretical Correction

Packet Slope Mass (kg) Mass (kg) Factor

Wi 0.512 7.42 23.85 1.79

W2 0.544 6.45 14.15 1.48

W2 0.448 3.5 8.43 1.55

Table 3.6 Results from analysis of traces of the free surface geometry and
cylinder. The measured mass was obtained from the traces, the
theoretical mass from equation 3.12, with L/a, = 2, and the

correction factor equals ",(theoretical mass / measured mass).

The mean of the correction factor is approximately 1.6. If this factor is used to correct

equation 3.19 the result is,

Equation 3.20 is compared to the observed pulsation frequency data in figure 3.65. The

theory and observations are seen to agree reasonably well except for the data from the

shortest wave packet, W3. Equation 3.20 overestimates the pulsation frequency

consistently for this packet whereas for the other two longer packets the data scatter
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above and below - predicted values. One explanation for this may be that the mean

correction factor does not apply universally to all wave scales.

3.A Bubble CJoud nc

In the two-dimensional experiments low frequency sound was observed after the

cylinder of air had broken up into a cloud of bubbles. This can be seen in the

spectrographs in figures 3.54a and 3.54b. At t = 0.4 s the low frequency signal due to the

impact of the crest occurs and at t = 0.61 s another signal, slightly lower in frequency

begins. This second signal is visible in both the microphone and hydrophone

measurements. In the microphone signal, figure 3.54a, the frequency can be seen to shift

to higher frequencies as time progresses. It was postulated that these low frequency

signals were caused by the collective oscillation of bubble clouds.

Felizardo (1990) studied the problem of sound scattering from bubble clouds and

derived a simple formula for the resonant frequencies of a cylindrical bubble cloud. The

bubble clouds were modeled as infinitely long cylindrical regions where the presence of

the air bubbles increased the compressibility of the fluid and reduced the sound speed.

The sound speed inside the cloud was equal to a constant value, c2 and outside the cloud

it was equal to a constant value, c,. The cloud boundary was assumed to be rigid and the

boundary conditions applied at the cloud boundary were that the pressure and the normal

component of the velocity were continuous. The radiation boundary condition was

applied in the far field. The pressure fields inside and outside of the cloud must satisfy

the Helmholtz equation and in the scattering problem an incident sound wave at an angle

00 insonifies the bubble cloud. The above formulation leads to a solution for the pressure

inside the bubble cloud as follows,
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P2 I % e jn cos(n(EO - 0.)) (A.J 0(k2r)) 3.21

n=0

where e. = 1 when n = 0 and en = 2 when n > 0, n is the mode number, 0 is the polar I
angle, J. is a Bessel function of the first kind, k2 is the acoustic wavenumber inside the

bubble cloud and An is the resonant amplification. The resonant amplification A is I
given by,

A. 2(sJi(v)H,(s). 3.22

where s = kj/k2 , v = k2a, a is the cloud radius, H. is a Hankel function of the first kind

and the primes denote differentiation with respect to the argument (Longuet-Higgins, 3
1967). A typical plot of the magnitude A. is shown in figure 3.66 as a function of the

frequency for the first three modes n = 0, 1 and 2. The peaks are located at frequencies U
where the corresponding mode would be at resonance. The locations of these resonant

peaks are the resonant frequencies of a cylindrical bubble cloud immersed in an infinite

fluid.

The sound speed inside and outside of the bubble cloud and the radius of the

cloud are required to calculate A. Void fraction measurements were made of three I
breaking events for the two-dimensional wave packet W2 and for two wave amplitudes of

the three-dimensional events at OTRC (Lamarre and Melville, 1991). The void fraction

measurements provide the mean void fraction and the cross sectional area of the bubble

cloud as a function of time. The mean void fraction was used to calculate the sound

speed and the cross sectional area was converted to the radius of the circular cylinder of I
equal cross sectional area. The sound speed inside the cloud was calculated from the

formula,

I
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Figure 3.66 Typical plot of the magnitude of the resonant amplification factor A. as a
function of frequency f (Hz) for the first three modes for which
n = 0, 1 and 2.
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where P. is the atmospheric pressure, p is the density of water and a is the mean void U
fraction. Equation 3.23 is valid for void fraction values, 0.002 < a < 0.94 (Carey and

Browning, 1988). The void fraction measurements were only accurate down to a

threshold of a = 0.003 because of system noise and therefore the cross sectional area of

the bubble cloud that was measured is the area which had a void fraction > 0.003. The

error incurred by this non-zero threshold is not considered to be significant. The sound U
speed outside of the cloud was assumed to be 1500 m/s.

It was not possible to measure the void fraction throughout the entire breaking

event because the void fraction probes were not able to resolve the cylinder of air formed

immediately after the impact of the wave crest. Therefore the void fraction data begins

several tenths of a second after the initial impact of the wave crest and the onset of sound I
production. The maximum cloud radius and the maximum mean void fraction are

tabulated in table 3.7 for the 3 two-dimensional and 2 three-dimensional breaking events

for which void fraction measurements were available. The ratio of the maximum cloud

diameter to the widths of the bubble clouds, as obtained from the traces of the whitecaps,

for the two three-dimensional events was approximately 0.06. A simple analysis can be I
carried out to determine the effect of the bubble cloud shape on the resonant frequency.

I
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Wave Packet Wave Slope or Maximum Maximum
Gain Mean Void Cloud Radius

Fraction (cm)

OTRC 0.70 0.226 29.5

OTRC 0.40 0.252 19.1

W2 0.544 0.307 17.6

W2 0.448 0.138 12.7

W2 0.384 0.167 9.4

Table 3.7 The maximum mean void fraction and maximum bubble cloud
radius for the five breaking events for which void fraction
measurements are available.

Carey et al (1990) derived an equation for the resonant frequency of the lowest

mode of a spherical bubble cloud using a formulation very similar to one described

previously for the two-dimensional clouds. They found that the resonant frequency of

the lowest mode of a spherical bubble cloud of radius, r and void fraction, a was given

by,

3.24f., 27 pa

where P0 is the gas pressure in the bubbles which is equal to the atmospheric pressure, 7

is the ratio of the specific heats set equal to 1 corresponding to isothermal conditions and

p is the density of pure water 1000 kg/m 3. For the two three-dimensional breaking

events for which void fraction data are available the width of the bubble cloud can be

estimated by measuring the width of the whitecap in frame (b) of figures 3.43 and 3.47.

The measurements of the void fraction provide the cross-sectional area of the cloud and
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therefore the volume of the cloud can be estimated. Then, the radius of a spherical i
bubble cloud of equal volume, r. can be calculated and this can be used in equation 3.24

to calculate the resonant frequency of the lowest mode. This value can be compared to

the resonant frequency of the lowest mode of a two-dimensional bubble cloud predicted 3
by locating the peaks in the magnitude of A., given by equation 3.22. The results of such

a comparison for the two three-dimensional breaking events is shown tabulated in table

3.8

gain t (s) a. (cm) r. (cm) a fo fm

0.40 1.6 15.6 39.2 0.252 14 14

0.40 2.1 17.1 41.7 0.039 31 34

0.40 2.6 11.5 31.2 0.017 71 68

0.70 1.6 19.7 61.5 0.226 12 9 1
0.70 2.1 28.3 78.0 0.057 15 15 1
0.70 2.6 27.0 76.0 0.018 30 27 I

Table 3.8 A comparison of the predicted resonant frequency of the lowest
mode of a two-dimensional bubble cloud, fo (calculated from

the magnitude of A. given by equation 3.22) and the predicted
resonant frequency of the lowest mode of a spherical bubble
cloud of equal volume, fo, (calculated from equation 3.24). a. 3
is the radius of the observed bubble cloud, r. is the radius of a
spherical bubble cloud of equal volume and a is the mean void
fraction of the observed bubble cloud.

The results in table 3.8 show that the resonant frequencies predicted by either

method differ by a maximum of 25%. This indicates that the shape of the bubble cloud 3
has very little effect on predictions of the resonant frequency of the lowest mode.

I
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Therefore, it is believed that reasonable predictions of the resonant frequencies of the

three-dimensional bubble clouds can be obtained by assuming they are two-dimensional.

The locations of the resonant peaks were evaluated for the first four modes, n = 0,

1, 2 and 3, and are shown plotted in figures 3.67 to 3.71. The predicted resonant

frequencies for each event and mode show a similar trend. As time Zlapses the resonant

frequencies increase. This is to be expected as the mean void fraction decreased

monotonically from its maximum value and this translates into a sound speed which

increases monotonically for the range of void fractions observed. Although the size of

the bubble cloud initially increases, and this would tend to decrease the resonant

frequencies, the increase in the sound speed due to the decrease in the mean void fraction

appears to dominate and therefore the predicted trend is for the resonant frequencies to

increase with time. Another feature of the theoretical results is that the clouds of larger

radius have many more resonant peaks than the smaller clouds. The largest bubble cloud

was produced by the three-dimensional breaking event with a gain of 0.70 and it had a

maximum radius of 29.5 cm and 7 resonant peaks below 500 Hz for mode 1. The

smallest bubble cloud was produced by the two-dimensional breaking event, packet W2

with a slope of 0.384 and it had a maximum radius of 9.4 cm and 2 resonant peaks below

500 Hz.

The resonant frequencies were plotted directly on the spectrographs of the

hydrophone and microphone signals to determine if any of the spectral peaks in the data

matched the predicted resonant frequencies. In figures 3.72 and 3.73 spectrographs from

the two-dimensional experiments are plotted for packet W2 with a slope of, S = 0.384.

The resonant frequencies for the first two modes, mode 0 in the upper plot and mode I in

the lower plot, are also plotted. It was found that the resonant frequencies of the higher

modes were too large to correspond to the low frequency spectral peaks in the data and

therefore they are not shown plotted with the spectrographs here. Both the hydrophone

spectrograph plotted in figure 3.72 and the microphone spectrograph in figure 3.73 have
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Figure 3.67 Theoretical predictions of the resonant frequencies f (Hz) of the first 4 1
modes (n = 0, 1, 2 and 3) of a cylindrical bubble cloud as a function of time

for the two-dimensional packet W2 with S = 0.384.

I
244 I



vv  mode 0moeI

I v mode 0

IV
* vVV

0 2

Fiur 3.6 Iloeia peitosothrsnatfqu c ief(H)othfis4

v w V model3

moes(n=0 1, 2 n2)o yidia ubl lu safnto ftm

I V ,

for the two-dimensional packet W2 With S = 0.448.

245



I
I

v v mode 0

V V V

vv V7 Qvvv v k7F

V I

VV mode 1vI

V

v vv moe

VV V V

VV

V V 3
V v
VV V

VVV

500 v "V'%' v I I
V v W mode 3

V V V'V
Wvv V,71

250~V VS- ! ~

0 I

0 1 2
t (s) 2

Figure 3.69 Theoretical predictions of the resonant frequencies f (Hz) of the first 4 I
modes (n = 0, 1, 2 and 3) of a cylindrical bubble cloud as a function of time

for the two-dimensional packet W2 with S = 0.544.

I



iv I.wV

mode 0 , 7v

model2I v
V9

0 1 2 3 4

mode 2 ,

V47

0 IF

mode q77 t (s)v

Figure~~~~~~~~~3 3.0TertclpeiVosoVh eonn rqece H)o h is
moes(n=0,1,2 n 3 o aclidrca ubleclu a afucio o tm

forth theedimnsona pcke wth ai A 040

247



mode 0 iI

mode2 I

-Vpx I
500 m I

N
250 wI

0 I

0 1 t2 S)3 4
t (s)

I

modes (n = 0, 1, 2 and 3) of a cylindrical bubble cloud as a function of time
for the three-dimensional packet with gain A = 0.70.

I

I



65. 70. 75. 80. 85. 90. 95. 100. 105. 110.

LU-

o00 0.61 1.23 1. 6k 2.46

Ti me Is)

65.. 70.. 75.. S0.. 85.. 90.. 95.. 100. 105. 110.

0

LP'

L

.00 0.61 1.23 1.64 2. Q6
Tirme Is)

Figure 3.72 Spectrograph of the signal from the upstream hydrophone for the two-
dimensional breaking event packet W2 with S = 0.384. The theoretical
resonant frequencies of a cylindrical bubble cloud computed using the void
fraction data are marked with A for mode 0 in the upper plot and for mode 1
in the lower plot. The spectra were averaged over 5 repeats of the event and
were calculated for 32-2048 point segments overlapped by 512 points and
windowed with a Blackman-Harris window. The bandwidth resolution is
9.8 Hz. Each color corresponds to a 5 dB re I jiPa2 increment in spectral
level.
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Figure 3.73 Spectrograph of the signal from the microphone for the two-dimensional

breaking event packet W2 with S = 0.384. The theoretical resonant
frequencies of a cylindrical bubble cloud computed using the void fraction
data are marked with A for mode 0 in the upper plot and for mode 1 in the
lower plot. The spectra were averaged over 5 repeats of the event and were

calculated for 32-2048 point segments overlapped by 512 points and
windowed with a Blackman-Harris window. The bandwidth resolution is
9.8 Hz. Each color corresponds to a 5 dB re 1 pPa2 increment in spectral
level.
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spectral peaks which agree with the predicted resonant frequencies of the second mode,

for which n = 1. The predicted resonant frequencies for the lowest mode, n = 0, do not

match the spectral peaks in this data. The spectral peaks in both the hydrophone and

microphone spectrographs shift to higher frequencies as time increases and this feature is

predicted by the theoretical results. Void fraction measurements were not possible before

t = 0.6 s and therefore predictions of the resonant frequencies for times earlier than this

are not possible. However, if the predicted resonant frequency in both spectrographs are

extrapolated linearly to earlier times they agree very closely with the observed spectral

peaks. It is evident from these plots that the acoustic signals cease long before the bubble

clouds have disappeared. This can be seen in figures 3.72 and 3.73 where the void

fraction data and therefore the predicted resonant frequencies extend out to t = 1.5 s

whereas the acoustic signals end at approximately t = I s.

The low frequency sound is produced during the early stages of the bubble

cloud's lifetime. The most energetic period of breaking is immediately following the

impact of the crest when large volumes of air are forced down into the water column.

The process of bubble cloud formation as these large volumes of air break-up is also very

violent and energetic. As energy is dissipated, the fluid motions become less violent and

there is less energy available to excite individual bubbles or clouds of bubbles and the

acoustic signals become weaker and eventually stop. At the point when the acoustic

signals have stopped, a bubble cloud of significant void fraction is still present in the

water column. Lamarre and Melville (1991) observed that the mean void fraction

remained above 0.01 within the first wave period following breaking. The duration of

the low frequency signals observed in the two-dimensional experiments was

approximately 1/2 a wave period.

Prosperetti (1988) states that the damping constant of the individual bubbles in

the cloud will be approximately equal to the value for a single isolated bubble oscillating

at the resonant frequency of the cloud. The damping of individual bubbles is greatly
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increased at frequencies much smaller than the resonant frequency of the individual U
bubbles (see figure 1.7). He concluded that bubble clouds oscillating at their resonant

frequencies would not produce significant sound unless the clouds were comprised of

bubbles with radii > 1 mm. This may be another reason why the low frequency signals

are much shorter in duration than the period over which the mean void fraction inside the

cloud is significant. It may be that the low frequency oscillations are increasingly I
damped out as the bubble sizes become smaller and the larger bubbles rise rapidly back

up to the free surface. Lamarre and Melville (1991) found that while the mean void

fraction remained above 0.01 for one wave period that only 5% of the initially entrained

air remained in the water column after one wave period.

The spectral data from the three-dimensional breaking experiments was also I
compared to the theoretically predicted resonant frequencies. In figures 3.74 and 3.75

two hydrophone spectrographs are compared to the resonant frequencies of the first and

second modes. The resonant frequencies of the first mode, n = 0, are plotted in the upper U
plot and those of the second mode, n = 1, in the lower plot. In these figures the first 15

spectra were averaged to give an estimate of the background noise spectrum which was

then subtracted from each spectra plotted in the spectrograph. This procedure removed

the large spectral peaks due to machinery noise and made it much easier to detect the

spectral peaks produced by breaking. The spectrograph in figure 3.74 is for the largest

amplitude event, A = 0.70 and is an ensemble average of 5 repeats using the data from

the downstream hydrophone. The resonant frequencies of the second mode, n = 1,

appear to match the spectral peaks in the data more closely than those of the first mode, n

= 0. In figure 3.75 a spectrograph ensemble-averaged over 3 repeats of the event with A

= 0.40 with measurements from the upstream hydrophone is plotted. There are two

spectral peaks of 101 dB, one at approximately 15 Hz and a second at approximately 90

Hz. The predicted resonant frequencies of the lowest mode, n = 0, match the peak at 15

Hz and the resonant frequencies of the second mode, n = 1, match the peak at 90 Hz. It

I
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Figure 3.74 Spectrograph of the signal from the downstream hydrophone for the three-
dimensional breaking event with A = 0.70. The theoretical resonant
frequencies of a cylindrical bubble cloud computed using the void fraction
data are marked with A for mode 0 in the upper plot and for mode 1 in the
lower plot. The spectra were averaged over 5 repeats of the event and were
calculated for 52-4096 point segments overlapped by 1024 points and
windowed with a Blackman-Harris window. The bandwidth resolution is
9.8 Hz. Each color corresponds to a 5 or 3 dB re 1 IiPa2 increment in

spectral level.
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Figure 3.75 Spectrograph of the signal from the upstream hydrophone for the three-
dimensional breaking event with A = 0.40. The theoretical resonant
fr-equencies of a cylindrical bubble cloud computed using the void fr-action
data are marked with A for mode 0in the upper plot and for mode 1 in the
lower pIlt The spectra were averaged over 5 repeats of the event and were
calculated for 52-4096 point segments overlapped by 1024 points and
windowed with a Blackman-Harris window. The bandwidth resolution is
9.8 Hz. Each color corresponds to a 5 or 3 dB re 1 J±Pa2 increment in
spectral level.
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was more difficult to determine for the three-dimensional breaking events which mode

matched the data more closely. After analyzing all the data it was concluded that the

resonant frequencies of the second mode did agree more closely with the observations.

The two-dimensional breaking waves produce low frequency sound through two

mechanisms. The pulsation of the cylinder of air and the resonant oscillation of the

bubble clouds. The air cylinder begins to pulsate immediately upon its formation and

continues to radiate sound up until the time it breaks up and forms a cloud of smaller air

bubbles. The frequency of the radiated sound remains constant throughout the lifetime

of the cylinder. The second mechanism begins to produce low frequency sound when the

bubble cloud is formed following the break-up of the cylinder. The sound radiated by

the resonant oscillation of the bubble cloud is generally lower in frequency than that

radiated by the pulsating cylinder. This is because the sound speed inside the air cylinder

prior to its break-up is 340 m/s the sound speed in air. After the cylinder breaks up the

void fraction abruptly decreases from a value of 1.0 to approximately 0.3 and the sound

speed decreases to 22 m/s. This dramatic decrease in the sound speed produces a

resonant frequency of the bubble cloud which is generally lower than that of the air

cylinder from which it was spawned. As the air cylinder breaks up the radius of the

bubble cloud must grow because the volume of air is conserved for up to a quarter of the

wave period after breaking (Lamarre and Melville, 1991). The larger bubble cloud

radius will also tend to decrease the resonant frequencies.

An estimate of the decrease in the frequency can be made by calculating the

inertia and stiffness for the case of the bubble cloud compared to the air cylinder. For the

case of an air cylinder near a free surface, the inertia of the fluid is (-27tpa, 2 ln(a./L) and

the stiffness is (4tp5 oC, 2). It is assumed that these equations also apply to the bubbly

mixture in the cloud. The volume of air is initially conserved as the cylinder of air

breaks up and forms a bubble cloud with a mean void fraction of ot. If V. is the volume

of air in the cylinder then V, the total volume in the bubble cloud is given by, V, = Vdc.
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The volume is proportional to the radius squared and therefore the inertia of the fluid I
around the oscillating bubble cloud is 1/a times larger than the inertia of the fluid around

the oscillating cylinder of air. The density of the air-water mixture with void fraction of

a is pm= p (1 - a) where p is the density of the pure fluid. The sound speed in the

mixture is given by cm = 4PJ(pa(l-a)) and c. is the sound speed in air. If it is assumed

that ao/L is constant then the ratio of the pulsation frequency of the bubble cloud to that I
of the air cylinder is given by,

f PmCm 2 1 P(1-a)P.o P0 32
TgCgS 2 pal-) .2 I

With P, = 101 kPa, p. = 1.23 kg/m3 and c.2 = 340 m/s equation 3.25 reduces to a

constant value, f/fo = 0.84. It is interesting to note that the percentage decrease is

constant and does not depend on the void fraction a. A 16% decrease in the frequency is

approximately equal to 1/2 the magnitude of the typical decrease in frequency observed I
in the data. This can be seen in figure 3.54 where the initial impact frequency is 130 Hz

and the spectral peak shifts down to approximately 85 Hz, a decrease of 35% which was

equal to the average decrease observed for all the events. One reason the predicted

decrease in the frequency underestimates the observed decrease may be because the ratio

a/L is not constant. A second reason may be that the equations for the stiffness and I
mass of a cylinder of pure air do not apply exactly to the case of a bubble cloud

comprised of a mixture of air and water. This example shows that both the inertia and

the stiffness increase when the cylinder of air breaks apart and forms the bubble cloud

but the inertia increases more than the stiffness and therefore the resonant frequency

decreases. I

I
I
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1.5. Compri Qf Twg ad Three-Dimensiona Results

The observed sound spectra from the two-dimensional experiments are quite

different in character from those observed in the three-dimensional experiments. This is

as discussed earlier due to the fact that the underwater acoustic signals in the two-

dimensional experiments were altered because of their propagation in the waveguide

formed by the wave channel. The spectra observed in the three-dimensional experiments

were not affected significantly by the modal properties of the OTRC wave channel.

Comparisons of the sound spectra of the two data sets are not very meaningful.

However, comparisons of some of the averaged acoustic measures can be made.

If the plots of the pressure spectrum level as a function of time are compared,

there appears to be a significant difference. In figures 3.13 and 3.14 the pressure

spectrum level as a function of time for the two hydrophone signals from the two-

dimensional experiments are plotted and it is apparent that for the steeper, large

amplitude events that the sound levels increase abruptly at all frequencies when the wave

impacts the free surface. In figures 3.34, 3.35, 3.37 and 3.38 the pressure spectrum level

as a function of time for the two hydrophone signals from the three-dimensional

experiments are plotted and it is evident that the sound levels do not rise as abruptly as

for the case of the two-dimensional breakers in figures 3.13 and 3.14. This is probably

due to the fact that the mechanics of the breaking process are quite different in the two

sets of experiments. When the two-dimensional waves break, the crest curls over and

impacts the free surface uniformly across the entire channel width. In the case of the

three-dimensional breakers, breaking begins near the center of the wave and the crest

curls over and impacts the free surface first at the center and then progressively later in

time the greater the transverse distance from the wave center. Therefore, two-

dimensional breaking switches on the sound abruptly because the entire crest impacts the
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free surface simultaneously whereas in three-dimensional breaking the sound levels build

up more gradually because the entire crest does not impact the free surface

simultaneously. Farmer and Vagle (1989) measured the sound generated by breaking

ocean waves and a typical time series of the pressure spectrum level observed by them is I
shown plotted in figure 3.76 (another example is shown plotted in figure 1.3). It is clear

from this figure that the results from the three-dimensional experiments agree more

closely with field observations. This is to be expected because breaking ocean waves are

always three-dimensional and they only occasionally approach the two-dimensional case

when they break simultaneously across a large fraction of their width. I
The other comparison which can be made between the two and three-dimensional

experiments is the correlation of the mean square acoustic pressure, p2 with the wave

slope, S and gain, A. In the two-dimensional experiments the wave slope, S is

proportional to the wave amplitude and in the three-dimensional experiments the gain is

proportional to the wave amplitude, A. The correlations of the mean square acoustic 3
pressure, p with wave slope, S from the hydrophone signals are shown plotted in

figures 3.16 and 3.17 for the two-dimensional experiments and with gain, A in figures I
3.40 and 3.41 for the three-dimensional experiments. In both the two and three-

dimensional experiments the log .of the mean square acoustic pressure p2 in the lower

frequency band is proportional to the wave slope S or the gain A. Similarly, a

comparison of the correlation of the mean square acoustic pressure, p2 with the wave

slope, S or the gain, A in the higher frequency band, f > 1 kHz, shows that the results I
from the two and three-dimensional experiments are "ery similar. In both cases the mean

square acoustic pressure, p2 increases rapidly as the slope or gain is increased from the

value for the incipient event until a plateau is reached and then the value of p2 remains

essentially constant for larger values of S and A. This close agreement between the two

data sets is confirmation that measurements of the sound generated by two-dimensional I

I
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breaking can be used to study how the dynamics of breaking are related to averaged I

acoustic measurements such as the mean square acoustic pressure.

The excellent agreement between the correlations of the mean square acoustic

pressure with wave slope and gain from the two and three-dimensional experiments also

implies that it may be possible to scale the averaged acoustic measurements from

experiments conducted in smaller wave channels to larger scales. The variation in the I
scale of the waves from the wave channel at MIT to OTRC is significant. It can be seen

in figure 3.26 from the spectra of the surface displacement that the breaking wave packet

at OTRC had significant energy at frequencies from 0.7 Hz down to 0.3 Hz. This

corresponds to wavelengths from 3 m to 17 m compared to wavelengths of

approximately 2 m in the MIT wave channel. I
One of the most obvious differences between the two and three-dimensional

experiments was the absence of the pulsating cylinder of air in the three-dimensional

experiments. There are two factors which may be responsible for this. First, in the

three-dimensional experiments there were no sidewalls to confine the air laterally.

Second, as discussed above, breaking occurs first near the center of the wave in the three- I
dimensional case and as a result the crest does not impact the free surface simultaneously

across the entire width of the wave. These two factors in combination prevent a single

large cylinder of air from being formed. Under the three-dimensional breakers

underwater video recordings showed that no smooth-walled cylinder existed. In the two-

dimensional case when the crest impacts the free surface the cylinder closes off and this I
may cause the pressure of the gas inside the cylinder to increase slightly above the

atmospheric pressure because it is confined laterally by the sidewalls of the tank. The

cylinder can maintain this pressure for a short period of time because the air is trapped.

The increased pressure inside the cylinder may be what permits it to remain stable for as

long as it does. In the three-dimensional case, no increase in pressure is possible because

the air can escape laterally very easily because the cylinder is not closed off
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simultaneously across the entire width of the wave. The underwater video recordings of

the three-dimensional breakers showed that a cylindrical bubble cloud tapered at the ends

was formed and grew laterally in size as breaking progressed and that from the stan of

breaking, the cloud was comprised of relatively small air bubbles.
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Chapter .. A Model f t Sound Gnea bI Gently Breakinzg Waves

I
In this chapter a model of the sound produced by gently spilling breaking waves

is presented. A large portion of this chapter is taken from "A model of the sound

generated by breaking waves", M.R. Loewen and W.K. Melville, J. Acoust. Soc. Am.,

90, p. 2075-2080, 1991. Recent experiments in the laboratory and at sea have proven

convincingly that the sound generated by gently spilling breakers is due to newly created

bubbles oscillating at their linear resonant frequencies (Medwin and Beaky, 1989, 1
Medwin and Daniel, 1990 and Updegraff and Anderson, 1991a,b). The observed sound

spectra in the laboratory and at sea sloped at -5 dB per octave in agreement with field

measurements (Knudsen et al, 1948 and Wenz, 1962). From these observation it was

concluded that the dominant source of ambient sound in the ocean at frequencies from 1

kHz to 20 kHz is oscillating air bubbles entrained by spilling breakers. Both the field 1
and laboratory measurements were made in the presence of only very small scale 3
breaking waves and therefore their observations and conclusions are only applicable to

low windspeeds and relatively mild breaking.

Medwin and Daniel (1990) used an array of four hydrophones to identify the

radius, position and the time of creation of several hundred bubbles beneath gently I
spilling waves. However, they did not report the dipole strength as a function of bubble

size and therefore it is not possible to directly confirm that their measured sound

spectrum is consistent with their measured bubble population. Updegraff and Anderson

(1991 b) conducted a very similar experiment at sea and they observed that the peak

oscillation pressures radiated by individual bubbles was not a function of the resonant I
I
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frequency or bubble radius. This can be seen in figure 4.1 where the peak oscillation

pressure for 81 bubbles observed by Updegraff and Anderson (1991b) are shown plotted

as a function of frequency. The solid line is a plot of the average peak oscillation

pressure in 1 kHz wide bins. The averages in the I kHz bins do not show any dependence

on the frequency or bubble radius.

Bubbles which are formed at the free surface are not in equilibrium initially and

must relax to an equilibrium spherical shape. It is this relaxation process which leads to

the linear oscillation of the bubbles at the lowest mode (i.e. breathing mode) which has a

frequency given by

O 3' = al4.1

where C1, is the resonant radian frequency of the breathing mode, a is the equilibrium

radius of the bubble, y is the ratio of the specific heats of the bubble gas, P. is the

ambient bubble pressure and p is the density of water (Minnaert, 1933). Longuet-

Higgins (1989a,b) has presented a non-linear theory which proposes that the asymmetric

or "shape" oscillations of the newly created bubbles produce significant sound energy.

The search for experimental evidence that this mechanism is important remains an area

of active research but to date the results are inconclusive.

Medwin and Daniel (1990) used eq. 4.1 to calculate the bubble size distribution

from the sound data1. In figure 4.2 we have plotted their bubble size distribution data

recomputed to show the number of bubbles per wave per radius increment. A plot of

'Since Medwin and Daniel used an acoustic method to measure the bubble size
distribution it may seem that the work described here is tautological. This is not the case.
According to this model the relationship between the bubble size distribution and the
sound spectrum produced depends on the dipole strength as a function of bubble size. It
is our simple hypothesis regarding the dipole strength (or equivalently c x L) which
supplements the measurements and leads to the success of the model.
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Figure 4.1 Peak pressures (x) (Pa) of the bubble osciation pulses observed by
Updegraff and Anderson (1991) as a function of the oscillation frequency.
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Figure 4.2 N(a) the number of bubbles per wave in the radius interval from (a + a,-,)/2
to (a,. + a,)/2 centered at a,, (Medwin and Daniel, 1990).
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their measured sound spectrum is shown in figure 4.3. The sound spectrum and bubble

size data were obtained from two separate series of experiments. The sound spectrum

was averaged over six breaking waves and the bubble size distribution data was

measured from a series of ten breakers (Daniel, 1989). By using a simple dipole model I
of the sound generated by individual bubbles we will demonstrate that the measured

sound spectrum may be simply related to the measured bubble-size distribution. It will

also be shown that Medwin and Daniel's data and our model both support the hypothesis

that low frequency sound may be generated under breaking waves without recourse to

collective bubble cloud oscillations: observed single bubbles oscillating at their lowest I
mode may radiate sound at frequencies below 500 Hz.

|l Formulation

In figure 4.4 a sketch of the basic geometry and definitions of some of the 3
parameters is shown. A bubble oscillating close to a free surface will radiate sound as a

dipole. If kL<l and ka<<l, the pressure field produced by a single bubble radiating can I
be written as,

p(t-tj) = 1-/(2x& pI R e-%8(t-ti)/2 (sin(c)b(t-ti)) - cOs(-tti)] H(t-t) 4.2 I
P J Rc ek I

where k is the acoustic wavenumber, d is the receiver depth, R is the range from the

receiver to the bubble, c is the speed of sound in water, L is twice the distance from the

bubble center to the free surface, 8 is the damping constant, t is the time at which the

oscillations begin, E is the amplitude of the bubble surface oscillations divided by the I
equilibrium bubble radius and H(t) is the Heaviside unit step function (Morse and I
Ingaard, 1968, p. 312 and Clay and Medwin, 1977, p. 452). For bubbles from 50 gm to

I
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7 mm radius oscillating near a free surface it has been shown that radiation and viscous

damping are negligible compared to thermal damping (Crowther, 1988 and Devin, 1959).

Crowther (1988) has shown that Devin's (1959) equation (Devin's eq. 68) for the thermal

damping constant could be approximated to within a few percent for frequencies below

60 kHz by,

4.4 x 10- 12  
4.

1 +2.5x

where f is the resonant bubble oscillation frequency in Hz2 .

The power spectrum of an individual bubble pulse as given by eq. 4.2 is,

3gyP0: 3 [=dL 2 p 42 [82k ) + 4.4g()(')b ] = 2 r (kR)2 ((&J\)2+4(o-C))2)X(&Ob))+4(1)+()2]

Figure 4.5 shows a plot of eq. 4.4 and it is evident that the energy is concentrated in a

very small band around o,.

The sound spectrum is modeled by reproducing the bubble size distribution of

Medwin and Daniel's (1990) for a given number of bubbles, K. The total sound

spectrum is the sum of the individual bubble pulse spectra calculated from eq. 4.4. The

inputs to the model are,

1) K the total number of bubbles

2) Medwin and Daniel's bubble size distribution

3)e , L, R, and R.,, .

In figure 4.2 is a plot of the measured bubble size distribution N(a) (Medwin and

Daniel, 1990). It is a set of discrete points Ni which specify the number of bubbles that

2In this and subsequent equations dependent on 8, SI units are applicable.
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Figure 4.5 The power speca-un of an individual bubble pulse g(co;cc4) as given by1

equation 4.4.
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are created by one gently spilling wave in the radius interval from (a, +a,-, )/2 to (a, +a,+,

)/2 centered at the radius a,. The number of bubbles, n, , in the radius interval centered

at a, is given by,

ni =--K Ni  4.5

X:Ni

i=1

The model randomly distributes the ni bubbles across the radius interval centered at a1 .

The range R was varied randomly between R . and R.. and, E and L where kept

constant for a given run. The final sound power spectrum is given by,

K
G(o) g(o;c) 4.6

i=l

where a, corresponds to a, through eq. 4.1.

In order to check the results obtained by this method, (which we called the

analytic spectrum model) a second Monte Carlo method was used. It simulates the sound

pressure time series directly. It evaluates eq. 4.2 for each bubble formed and produces a

time series from the sum of the individual bubble pulse time series. Inputs to the model

are,

1) K the number of bubbles

2) Medwin and Daniel's bubble size distribution
3 ) Rmrn, R= , emx,, , Lmm ,,m and t=..

The number of bubbles in each radius interval is calculated as outlined for the analytic

spectrum model. The model starts each bubble pulse at a random time between t = 0 and

t = t. For each bubble, R, E and L are varied randomly between the corresponding
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minimum and maximum values. The sound pressure time series of the ensemble of 1
oscillating bubbles is given by,

K
P(t) - p1(t-t) 4.7 I

i=l1 I
where p(t-ti ) is given by eq. 4.2. The sound spectrum is then calculated using standard

signal processing techniques.

Spectra computed by the two methods are shown compared in figure 4.6. They

are seen to produce very similar results when the mean values of E and L in the Monte

Carlo model are set equal to the constant values of £ and L used in the analytic spectrum I
model. This suggests that the sound spectrum is insensitive to the higher order statistical

moments of the parameters.

Both models contain a certain amount of randomness. They both distribute the

bubbles randomly across a given bubble radius interval, they both randomly vary the

range between a minimum and maximum value and the second Monte Carlo method I
varies £ and L randomly between minimum and maximum values. In figure 4.7 we have

plotted a mean spectrum averaged from ten spectra modeled with the analytic spectrum

model and the 95% confidence limits. This figure indicates that the randomness of the

model results in 3 to 4 dB of variation in the amplitude of the modeled spectrum. As a

result we would not expect modeled spectra to match measured spectra closer than these

limits.

RI

The goal of this study was to show that the bubble size distribution beneath a

breaking wave could be used to calculate the sound pressure spectrum. The values

I
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Figure 4.6 A comparison of the sound spectrum calculated using the analytic spectrum
model, plotted with the bold line, and the Monte Carlo model, plotted with

the thin line.
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chosen for K, E, L and R will obviously determine how well the sound spectrum is

predicted. Medwin and Daniel (1990) observed approximately 50 bubbles per wave and

their sound pressure spectrum (figure 4.3) was averaged over 6 waves therefore, K = 300,

for all of the model runs. The depth of the hydrophone, d, in their experiments was

0.24 m . The range from the hydrophone to the bubbles was estimated from figures 12

and 13 of Daniel's thesis (Daniel 1989) which show the horizontal distribution of the

bubbles in two breaking waves. These plots show that R varied from 0.24 m to

approximately 0.5 m. Therefore we set Rin = 0.24 m and R. = 0.5 m for the model

runs.

The values for e and L were more difficult to estimate. Medwin and Beaky

(1989) estimated the value e of for a single bubble and found E --0.014 for a--0.3mm. We

assume that the value for L is of the order of the wave amplitude. This follows from the

conjecture that in these gently spilling waves the bubbles are entrained at the toe of the

spilling region as shown in figure 4.8. Medwin and Daniel (1990) do not provide any

wave height data, but Daniel (1989) states in his thesis that the maximum wave

amplitude was 0.03m. Therefore we assume that L = O(10.2 M) for the model runs.

In figure 4.9 the sound spectra produced by the Monte Carlo model with E

=0.005-0.025 and L=0.01-0.03 m and Medwin and Daniel's spectrum are plotted. The

modeled spectrum matches the amplitude and slope of the measured spectrum closely

when e and L are set to these physically realistic values. The bars indicate the 95%

confidence limits of the modeled spectrum.

Results from the analytic spectrum model with e£ =0.015 and L=0.02 in are shown

in figure 4.10, compared to Medwin and Daniel's (1990) spectrum. The amplitude and

slope of the modeled spectrum agree well with the observed data when e and L are set

equal to these values. The bars again indicate the 95% confidence limits of the modeled

spectrum. These values of £ and L would give a maximum farfield dipole pressure I m

on axis of 1.7 Pa.
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Figure 4.9 Comparison of a sound spectrum from the Monte Carlo model with

E= 0.005-0.025 and L = 0.01-0.03 m and the measured sound spectrum of
Medwin and Daniel (1990), plotted with a bold line. The bars indicate the
95% confidence limits of the modeled spectrum.
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Figure 4.10 Comparison of a sound spectrum from the analytic spectrum model with
E = 0.015 and L = 0.02 m and the measured sound spectrum of Medwin and
Daniel (1990), plotted with a bold line. The bars indicate the 95%
confidence limits of the modeled spectrum.
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We have shown that a simple model of the sound produced by a single oscillating

bubble can be used to obtain the sound spectrum from the bubble size distribution under

breaking waves. If the range, R ,from the receiver to the breaker is known then the

model has only 2 unknown parameters , and L. Our results indicate that the product eL

is not a function of the bubble radius, a, but is effectively constant across the sound

spectrum. This is supported by Updegraff s measurements which showed that the peak

oscillation pressures were not a function of frequency (Updegraff, 1989).

It is possible that E and L are functions of the wave geometry or the energy

dissipation. For waves of moderate slope Loewen and Melville (1991) found that the

acoustic energy radiated by a breaking wave was approximately proportional to the

energy dissipated and the wave slope. Longer or steeper waves might be expected to

entrain bubbles to larger depths increasing the dipole moment L. Under larger breaking

waves L may increase because extremely large pockets of air are injected to greater

depths initially, and when they break up to form smaller bubbles the dipole moment arm

is of the order of the depth to which the pocket of air was initially injected. It could be

the depth to which the large pockets of air are injected which scales with the wave

parameters. It may also be that larger waves produce more sound simply because more

air is entrained and hence more bubbles are formed.

The largest bubble that Medwin and Daniel (1990) observed had a radius of 7.4

mm which corresponds to a resonant frequency of 440 Hz. We expect that bubbles

considerably larger than this will be present under waves larger than the 1.4 Hz and

0.03m amplitude waves generated by Medwin and Daniel (1990). Therefore it should be

possible for these larger bubbles to radiate sound at frequencies as low as several hundred

Hz.
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We believe that these results clearly demonstrate that bubble population data can

be used to accurately and simply model the shape and the amplitude of the sound

spectrum produced by a breaking wave. The more practical application would be to

solve the inverse problem. That is, to calculate the bubble size distribution from the I
sound spectrum. If E and L, or at least the product eL, is a constant as assumed in our

model, then the problem is easily inverted.

If we assume that the energy in the sound spectrum at a given radian frequency 3
mb is due only to bubbles corresponding to a radius, a, calculated from eq. 4.1, the

problem becomes even simpler. We are assuming that the spectrum of a single bubble I
pulse is a delta function which is a reasonable approximation, (see figure 4.5). The mean

square signal level for an individual bubble sound pulse is found by integrating eq. 4.2 in

time to give,

O2()b) (3-IPJ 3If(eCdL 2
tP 1 tR7cJ

I
-4)] + 82+2 K 824)] 4.8

where p2 (o,) is the mean square signal level of a bubble resonating at radian frequency

cwb. The mean square value of the signal within the frequency range ow-Aoa and o4+Aco is

~Igiven by,

__I
u~' 2

I f P(w) dco 4.9
Ao,
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(Bendat and Piersol, 1986). For the inverse problem the input is the sound spectrum

P((o) which has a resolution of Aow. The number of bubbles in each frequency bin from

o€-AciV2 to 4+Ao/2 is then given by,

n -4.10

if we assume the range R is the same for bubbles of a given radius. The complete bubble

size distribution can be calculated by evaluating eq. 4.10 in each frequency bin across the

entire sound spectrum.
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Chaliter & Summar aMn £oncisI

This thesis has reported on laboratory measurements of the acoustic radiation and I

microwave backscatter from breaking waves and a model of the sound generated by

breaking waves. The primary motivation of the research was to determine whether

measurements of the sound generated by breaking waves could be used to quantitatively

study the dynamics of the breaking process. Correlations of the averaged acoustic and

microwave measurements with the dynamics of breaking waves were determin, i and I
detailed measurements of the sound radiated by two- and three-dimensional breaking

waves were reported. Comparisons were made between the sound generated by two and

three-dimensional breaking waves and the mechanisms responsible for the generation of

low frequency sound beneath breaking waves were studied. It was discovered that a

close link exists between the dynamics of breaking and the process of air entrainment and I
the generation of sound. A model of the sound generated by breaking waves was

developed which uses the bubble size distribution to predict the sound spectrum.

From laboratory measurements of the microwave backscatter and acoustic

radiation from two-dimensional breaking waves (described in chapter 2) the major

findings were that: 1) the mean square acoustic pressure and backscattered microwave I
power correlate with the wave slope and dissipation for waves of moderate slope, 2) the

backscattered microwave power and mean square acoustic pressure correlate strongly

with each other, 3) the amount of acoustic energy radiated by an individual breaking

event scaled with the amount of mechanical energy dissipated by breaking, and 4) when

the mean square acoustic pressure and the backscattered microwave power were scaled 3
with the wave packet center component wavelength or phase speed, the data from the

three packets collapsed onto single curves.
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The fact that the mean square acoustic pressure and the backscattered microwave

power correlate with the wave slope and fractional dissipation is significant because it

implies that it may be possible to use acoustic or microwave measurements in the field to

remotely study the processes associated with wave breaking, including gas transfer,

momentum transfer and er-,rgy dissipation at the air-sea interface. The observation that

the mean square acoustic pressure and the backscattered microwave power correlate

strongly with each other suggests that, because the microwave backscatter is dependent

on the geometry of the prebreaking wave, the sound radiated by breaking must also be

dependent on the prebreaking wave geometry. The fact that the amount of acoustic

energy radiated by an individual breaking event scaled with the amount of mechanical

wave energy indicates that it may be possible to use measurements of the sound radiated

by breaking waves at sea to quantify dissipation in the field. The correlations of the

mean square acoustic pressure and the backscattered microwave power with the wave

slope and dissipation collapsed onto single curves when the data was scaled with the

appropriate wave packet parameter. This implies that the correlations obtained may be

extended to waves of larger scale.

In the combined microwave and acoustic experiments the hydrophone was

located several meters downstream of the breaking location and therefore the acoustic

signals at frequencies below the cut-off frequency at 2200 Hz were severely attenuated.

As a result, the observed correlations with the mean square acoustic pressure are only

relevant to sound generated by breaking waves at frequencies > 2200 Hz.

In order to extend these results and to study the sound generated by breaking

waves at lower frequencies another series of experiments was conducted in the larger

wave channel (0.76 m wide by 0.60 m deep) at MIT. The sound was measured from

breaking waves generated using three wave packets with center component wavelengths

of 1.60 w-,. 1.93m and 2.36 m. Efforts were made to ensure that low frequency sound

generated by breaking could be detected if it existed. The hydrophones were placed
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directly underneath the breaking events to avoid cutting off the low frequencies and the

wavemaker hydraulic system was shut off prior to sampling the acoustic signals to 3
eliminate the low frequency noise produced ', the hydraulic pump. These steps

produced an acceptable signal to noise ratio at lower frequencies and the sound was

sampled in the frequency band from 20 Hz to 10 kHz.

A significant result from these experiments was that sound at frequencies as low

as 20 Hz was observed. The spectral levels at frequencies < I kHz increased consistently

as the slope of the wave packets was increased and the mean square acoustic pressure in

the frequency band from 0 Hz to 1000 Hz was found to correlate strongly with the wave

slope and dissipation. It was noted that the spectral levels at low frequency did not 3
increase until the slope was increased to a large enough value that the waves began to

plunge. The transition from spilling to plunging occurs very quickly as the slope is

increased from the incipient breaking value and as a result the majority of the events

were plunging events. The spilling events that were observed did not generate anyI

significant sound energy at frequencies < I kHz. If this distinction is shown to be true in

the field then it may be possible to use acoustic measurements to differentiate between

spilling and plunging breakers in the field. 3
Another major finding was that a characteristic low frequency signal occurred

immediatejy following the impact of the plunging wave crest onto the free surface. The I
frequency of this signal decreased as the slope and fractional dissipation increased. The

frequency was strongly correlated with both the wave slope and the fractional dissipation.

An underwater video revealed that as the wave crests plunged over and impacted the free

surface along the forward face of the wave a perfectly smooth-walled cylinder of air was

forced down into the water column. It was proposed that the characteristic low 3
frequency signals were due to the pulsations of the smooth-walled cylinders of air.

An expression for the pulsation frequency of an infinitely long circular cylinder I
located near a pressure release surface was derived. The cylinder was modeled as a 3
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linear oscillator and the resonant pulsation frequency was calculated by deriving

expressions for the stiffness and mass of the system. The theoretical expression predicted

that the pulsation frequency was inversely proportional to the radius of the cylinder and

that the pulsation frequency increased as the cylinder moved closer to the free surface.

However, when the expression was evaluated using the observed cylinder sizes the

resulting pulsation frequencies were approximately 50% lower than the observed values.

When the mass term was corrected so that the mass of the system was equal to only the

mass of the thin layer of fluid separating the cylinder from the atmosphere the equation

predicted pulsation frequencies which matched closely with the observed values.

It was found that the volume of air in the cylinders was correlated with the

fractional dissipation. This observation is consistent with the results of Lamarre and

Melville (1991) who also found that the volume of air entrained by breaking correlated

with the energy dissipated and that up to 50% of the energy dissipated by breaking was

expended entraining air against the buoyancy force. Their results were for three breaking

events and therefore the correlation observed for nineteen breaking events in the

experiments presented here strengthens their conclusion considerably. The volume of air

was also found to be well correlated with the mean square acoustic pressure in the

frequency band from 0 Hz to 1000 Hz. The correlation of the volume of air with the

mean square acoustic pressure in the low frequency band shows that the process of air

entrainment is closely linked to the generation of sound. The correlations of; 1) the

volume of air to the fractional dissipation, and 2) the fractional dissipation to the mean

square acoustic pressure in the low frequency band, establish that the process of air

entrainment and the generation of sound are directly related to the dynamics of breaking.

To determine whether three-dimensional effects were important and to measure

the sound generated by breaking waves of considerably larger scales, a series of

experiments were conducted in the large multi-paddle wave basin (45.7m long by 30.5 m

wide and 5.8 m deep) at the Offshore Technology Reseat.. Center (OTRC) at Texas
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A&M University. Three-dimensional breaking waves were generated and the sound 3
produced by breaking was measured in the frequency range from 10 Hz to 20 kHz.

Breaking events were generated using one wave packet with a center frequency of 0.5 Hz

and center component wavelength of 6.3 m. It was not possible to measure the fractional

dissipation for the three-dimensional breaking events and therefore the gain of the signal

sent to the wave paddles which is proportional to the wave amplitude was used to I
characterize the events. Comparisons with results from the two-dimensional experiments

were still possible because the slope parameter S, used to characterize the two-

dimensional breaking waves, is also proportional to the wave amplitude.

Two important results were that sound spectra showed significant increases in

level across the entire bandwidth from 10 Hz to 20 kHz and the spectra sloped at -5 to -6 I
dB per octave at frequencies > 1 kHz. The observed -5 to -6 dB spectral slope of the

sound measured beneath very energetic, large scale, plunging three-dimensional breaking

waves supports the conclusion that the observed dependence of ambient sound levels in

the field for frequencies > I kHz at high windspeeds (which corresponds to larger more

violent breaking events) is due to the sound generated by breaking waves. It has been I
demonstrated previously that the dependence of ambient sound levels for frequencies > 1

kHz at very low windspeeds, corresponding to small gently spilling waves, is due to the

sound generated by breaking waves (Medwin and Beaky, 1989 and Updegraff and 3
Anderson, 1991). However, this is dierct evidence that the -5 dB per octave spectral

slope is consistent with the high frequency sound generated by large scale, plunging I
breaking waves. The implication is that the same mechanism, the oscillation of

individual air bubbles at their linear resonant frequencies, is responsible for the observed

spectral shape of the sound generated by both small and large scale breaking waves. If 3
this is true, then a model of the sound generated by breaking waves based on the sound

radiated by a single bubble oscillating at its linear resonant frequency may be used to 3
estimate the high frequency sound generated by breaking waves of all scales.
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In chapter 4 a model of the sound produced by breaking waves which uses the

sound radiated by a single bubble oscillating at its linear resonant frequency, and the

bubble size distribution to estimate the sound spectrum was presented. The data of

Medwin and Daniel (1990) was used to evaluate the performance of the model. The

model generates a damped sinusiodal pulse for every bubble formed, as calculated from

the bubble size distribution. If the range to the receiver is known then the only unknown

parameters are E, the initial fractional amplitude of the bubble oscillation and L, the

dipole moment arm or twice the depth of the bubble below the free surface. It was found

that if the product cxL is independent of the bubble radius the model reproduces the

shape and magnitude of the observed sound spectrum accurately. The success of the

model implies that it may be possible to calculate the bubble size distribution from the

sound spectrum. The model was validated using data from experiments conducted by

Medwin and Daniel (1990) where the breaking events were small scale gently spilling

waves. In addition, the observed sound spectra from the experiments at OTRC imply that

a similar model may also be used to estimate the higher frequency sound radiated by

much larger scale breaking events.

The mean square acoustic pressure in the frequency bands from 0 Hz to 150 hz

and from 1 kHz to 20 khz were correlated with the wave amplitude in the three-

dimensional breaking experiments. The observed correlations are very similar to the

correlations of the mean square acoustic pressure in the frequency bands from 0 Hz to

1000 Hz and from I kIHz to 10 kHz for the two-dimensional breaking events. The close

agreement between the two and three-dimensional measurements demonstrates that

averaged measures of the sound radiated by breaking are quite robust. That is,

measurements of the mean square acoustic pressure generated by two-dimensional

breakers in smaller wave channels are representative of observations of the sound

generated by three-dimensional breaking waves in larger scale wave basins.
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In the three-dimensional experiments underwater video recordings showed that no

smooth-walled cylinders of air were present and that the entrained bubble clouds were

comprised of relatively small air bubbles right from the start of breaking. As a result, no

characteristic low frequency signals similar to those observed in the two-dimensional

experiments were detected. Low frequency sound was observed but it occurred

approximately 0.7 s after the initial impact of the plunging wave crest. In the two- I
dimensional experiments the smooth-walled cylinder of air radiated low frequency sound

from the moment the crest impacted the free surface until the time the cylinder broke up

into a cloud comprised of smaller air bubbles. At this time a lower frequency signal

began and the frequency of this signal increased slowly with time. The origin of this

lower frequency signal in the two-dimensional experiments and the origin of the I
observed low frequency sound in the three-dimensional experiments was investigated. 3

It was postulated that in both cases these low frequency signals were due to the

collective oscillations of the bubble clouds. To test this hypothesis the resonant 3
frequencies of a two-dimensional bubble cloud immersed in an infinite fluid were

calculated and compared to the spectral peaks observed in the data. In the case of the U
two-dimensional breaking waves the observed spectral peaks matched the resonant

frequency of the second mode consistently. The spectral peaks in the data from the

three-dimensional breaking waves matched the predicted resonant frequencies of the first

or second mode. This result supports the conjecture that the observed frequencies were

due to the collective oscillations of bubble clouds. Additional analysis was carried out I
in an attempt to confirm this hypothesis.

In the two-dimensional experiments it was observed that the characteristic low

frequency signal associated with the oscillating cylinder of pure air occurred immediately 3
following the impact of the plunging wave crest and continued for approximately 0.25 s.

Following this, at a time corresponding to the cylinder of air breaking up into a cloud of 3
smaller bubbles, the frequency of the signal would decrease abruptly by approximately
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35% and then as time progressed the frequency would slowly increase. A simple

analysis was carried out in which it was shown that, if the volume of air is conserved and

the ratio of the cloud radius a. to its depth below the free surface L remains constant

when a cylinder of pure air breaks up to form a bubble cloud, the resonant frequency of

the resulting bubble cloud would be approximately 16% lower than the resonant

frequency of the cylinder of pure air. The factor of two difference between the predicted

decrease and the observations may be due to the fact that the ratio a/L does not remain

constant or to the fact that the stiffness and mass of the bubble cloud are not predicted

accurately by the equations for a cylinder of pure air. It is believed that the observed low

frequency signals generated by the two-dimensional breaking waves can be explained as

follows. Immediately following the impact of the plunging wave crest a low frequency

signal is observed which lasts approximately 0.25 s and remains at a constant frequency.

This signal is believed to be due to the pulsating smooth-walled cylinder and its resonant

frequency can be estimated by assuming the mass of the system is equal to the mass of

the thin layer of fluid separating the cylinder from the atmosphere. At the time when the

cylinder breaks up to form a cloud of smaller bubbles the frequency of the signal

decreases by approximately 35%. This decrease in frequency is consistent with the

predicted decrease in frequency which would occur when a cylinder of pure air breaks up

to form a bubble cloud. The frequency of the observed signals agree closely with the

predicted resonant frequencies of a two-dimensional cylindrical bubble cloud. As time

progresses, the frequency of the signal increases slowly and this trend is also seen in the

predicted resonant frequencies. The frequency increases with time because as the bubble

cloud degases the sound speed inside the cloud increases and hence the resonant

frequency increases.

The sequence of events for the three-dimensional breaking waves is less well

understood. Some low frequency sound is generated almost immediately following the

impact of the plunging crest but the largest amplitude spectral peaks occurred
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approximately 0.7 s after the initial impact. The underwater videos showed that the

occurrence of the largest amplitude spectral peaks coincides approximately with the time

when the forward motion and rotation of the three-dimensional bubble cloud has stopped.

In the case of the three-dimensional breaking events the crest does not impact the free I
surface simultaneously across its width. Therefore the bubble cloud is formed first near

the center of the wave and then grows in width as the crest continues to plunge down

onto the free surface During this time the bubble cloud is being carried downstream

rapidly by the wave and it is also rotating because of the overturning motion of the wave.

Then, as the cloud increases in size, the drag force increases, the rotation slows and the I
cloud's horizontal velocity decreases. At this time there is very little active breaking

occurring at the surface and the largest amplitude low frequency sound is radiated.

The evidence presented in this thesis which supports the hypothesis that the low

frequency sound observed beneath both the two and three-dimensional breaking waves is

due to the collective oscillations of bubble clouds is: I

1) the fact that the observed spectral peaks in the data match closely with U
estimates of the resonant frequencies of a two-dimensional cylindrical bubble

cloud,

2) the fact that the entire evolution of the low frequency signals beneath the tv. o-

dimensional breakers can be explained by the theories of the pulsating cylinder

of air and of the collective oscillations of a cylindrical bubble cloud, I
3) the fact that the decrease in frequency observed when the cylinder of pure air

breaks up to form a cloud of smaller bubbles can be estimated,

4) the observation that the time at which the largest low frequency spectral peaks 3
occur beneath the three-dimensional breakers surface agitation and spray

impact are minimal and therefore the observed signals are not originating at I
the free surface. 3
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In chapter 3 it was found that predictions of the resonant frequencies of the three-

dimensional bubble clouds from equations based on the assumption that: 1) the bubble

cloud was an infinitely long circular cylinder with a radius equal to the observed value,

or 2) the bubble cloud was a spherical cloud with a volume equal to the observed

volume; were approximately equal. If the resonant frequency of bubble clouds is really

this insensitive to the shape of cloud this could have important implications. For

example, if the low frequency sound radiated by a breaking wave at sea is measured and

if it is assumed that the observed frequency corresponds to the lowest mode of oscillation

and that the void fraction of the cloud is known within a reasonable range of values, then

the volume of the cloud can be estimated. Typical void fraction values for the bubble

clouds observed in the laboratory at the times when the clouds were radiating low

frequency sound were 0.15 < ax < 0.25. Then, because the resonant frequency of a

spherical bubble cloud is proportional to (a)-1/2 the radius, r. of the spherical bubble

cloud of equal volume can be estimated to within approximately 30%. It has not been

shown that the resonant frequencies of the higher modes are as insensitive as the lowest

mode to the shape of the cloud however, if this were shown to be true then it may be

possible to determine both the bubble cloud volume and the void fraction by measuring

the low frequency sound radiated by breaking. If two low frequencies are measured

corresponding to the first and second modes then, because there are only two unknowns

r. and a, the volume of the cloud and the void fraction can be estimated. Further study

of this issue is certainly warranted because if estimates of the total volume of entrained

air were possible in the field this could lead to more accurate estimates of the

contribution of breaking waves to the transfer of gas across the air-sea interface.

Another issue which warrants further study is the possibility that low frequency

sound may be useful for differentiating between spilling and plunging breaking waves. It

may be that the distinction is only observed beneath two-dimensional breaking waves
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because of the presence of the oscillating cylinder in the case of plunging events and its U
absence in the case of spilling events. In the three-dimensional experiments, all of the 3
breaking events were plunging events and therefore it was not possible to verify whether

significantly less low frequency sound was radiated by spilling events as compared to 3
plunging events.

The most obvious extension of the research reported here would be to conduct

experiments at sea to determine whether significant low frequency sound can be detected

consistently beneath breaking waves. If simultaneous void fraction measurements and

video recordings were made in addition to the sound measurements then the hypothesis 3
that the cloud volume and void fraction can be estimated from sound measurements alone

could also be evaluated. However, it may be that this hypothesis could be verified more I
easily by conducting more laboratory experiments in large multi-paddle wave basins 3
similar to the one at OTRC.

I
U
I
I
I
I
I
I
I
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The Effect of Noncircular Cylinder ShaDe

This appendix describes in detail the procedure used to estimate the effect of

noncircular shape on the pulsation frequency of cylinders of air immersed in water. The

analysis is based on the work of Strasberg (1953) who estimated the effect of

nonspherical shape on the pulsation frequency of air bubbles in water. It is assumed that

as the cylinder pulsates the undisturbed volume and pressure remain constant and that the

stiffness is not affected by the shape. Therefore any change in the pulsation frequency

must be associated with a change in the inertia or mass. Calculating the pulsation

frequency of a noncircular cylinder is therefore reduced to the problem of determining

the inertial constant of a cylinder of arbitrary shape but fixed volume.

The differential equation of a pulsating cylinder can be written in terms of the

volume pulsation AV(t) = V(t) -V. where V. is the undisturbed volume per unit length.

If AV << Vo then the differential equation is the standard second order equation of a

linear oscillator,

m AV (t) + K AV(t) = 0 C. I

where m and K are the inertial and stiffness constants respectively, the dots denote

differentiation with respect to time and the effects of damping have been neglected. The

stiffness constant K equals minus the ratio of the change in pressure inside the cylinder

to its change in volume,

dP C.2
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For a spherical air bubble it can be shown that dP = -3yP o (a/ao - 1) and 1

dV = 47ta0
3 (a/a0 - 1). Then, K = 'P,/Vo where a. is the undisturbed bubble radius, P. is

the undisturbed pressure inside the bubble and y is the ratio of the specific heats. The

inertial constant represents the pressure required to give the surrounding fluid a volume 1

acceleration,

dPC.3

For a spherical air bubble it can be shown that dP = - pOca.8 and AV = -4na928ao2 and

therefore m = p/4nao where o is the radian frequency and 8 is the amplitude of the

bubble wall oscillations. Then the resonant frequency is given by,

l= /3_= na .o I4 o 1I3fo=2ifm 2 [a~ 1-P- ffi  ' P C.41

which is the well known Minnaert (1933) formula.

The work done on the fluid by the pulsating cylinder can be written as, !
v A V(t)

W = :P(t)dV(t) dt = fP(t) AV (t) dt. C.4

V0  0

The work done on the fluid becomes kinetic energy of the fluid. Using equation C.3 to

substitute for P(t) in cquation C.4 an expression relating the kinetic energy T to the

inertial constant m is obtained,

I
I
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AV,(t)

T= fm AV (t) AVr (t) dt m (A (t))2 C.5

0

From equation C.5 the inertial constant can be seen to be the constant of proportionality

between the kinetic energy of the fluid and half the square of the volume velocity. The

kinetic energy of the fluid can be calculated by evaluating the following surface integral

on the cylinder surface,

T= p fOV -n dA C.6

A

where 0 is the velocity potential, A is the area per unit length of the cylinder, the

gradient of the velocity potential, V4' = u the velocity vector, p is the density of the fluid

and n is the unit vector normal to surface (Batchelor, 1967, p. 383). Combining

equations C.5 and C.6 gives,

m=- P f V n dA. C.7
(AVr (t))2 A

If kao << 1 then D will be essentially constant over the surface of the cylinder and

equation C.7 becomes,

m I fv4 ndA -  C.8
(AV (t))2 A AV (t)
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I

Therefore the inertial constant is seen to be proportional to the ratio of the velocity 1
potential to the volume velocity. The problem has now been reduced to determining the 3
effect of shape on the ratio of the velocity potential to the volume velocity.

A mathematical analogy exists between electrostatics and fluid dynamics which

simplifies the solution. The electrostatic potential of an electrostatic field is equivalent to

the velocity potential of a hydrodynamic field. It can be shown that the dielectric flux Tp I
is equivalent to the volume velocity AV (t) (flow rate). The capacitance C is defined as, 3

= - 2) C.9 I
I

where TP is the dielectric flux and in this equation 0 is the electrostatic potential. From

equation C.9 it is evident that the capacitance is equivalent to the ratio of the volume 3
velocity to the velocity potential, that is,

A'v (t) 1 ci
Cm C.10I

where cD is the velocity potential. This analogy allows published results on the 1
capacitance of conducting ellipsoids to be used to calculate the ratio of the inertial 3
constant of a circular cylinder to that of a noncircular cylinder. The following

relationships are valid, 3
I

C.II

i
I

I
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where fo, ,no and C. are the pulsation frequency, inertial constant and capacitance

respectively of the circular cylinder and f, m and C are the corresponding values of the

noncircular cylinder.

It can be shown that a set of equipotential surfaces is defined by the following

formula,

x2  2 Z2

1 a2 +1 + b2 +13++c2 +13 3.12

where x, y, and z are Cartesian coordinates, c > b > a and -a2 < 3 < cD (Smythe, 1939).

When 3 = 0 an ellipsoid with axes lengths a, b and c is defined and when 0 = Cw a sphere

of infinite radius is defined. The potential on the surface of the ellipsoid is constant and

if the potential at 3 = cm is taken to be zero the capacitance of the ellipsoid is given by,

~r(a2 + P)(b 2 + P)(c 2 + P)

(Smythe, 1939). The integral in equation 3.13 can be evaluated numerically by splitting

it into two parts, integrating from 0 to some finite value y and then from y to a. In the

second integral the transformation 0 = I\a1 is made and the limits of integration become

IWY to 0. If c >> a or b then the shape of the ellipsoid approaches that of a two

dimensional cylinder. Therefore with c = 7.6 m (10 times the wave channel width) and

(ab) = 0.02 equation 3.13 was evaluated for various values of a/b the ratio of the major to

minor axis length. These results are tabulated in table C.1.
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a/b C f/f.

1.0 2.764 1.0

2.0 2.824 1.011 I
4.0 3.006 1.043 I
8.0 3.318 1.095

16.0 3.783 1.170 3
Table C.1 Results from integrating equation 3.13 numerically, f/ f. is the 3

ratio of the calculated pulsation frequency to f. the pulsation
frequency of an ellipsoid with a circular cross section. 3

The observed cylinders had a major to minor axis ratio of approximately 3. Therefore

from table C. 1 the frequency of the observed cylinders could be expected to be

approximately 3% higher than that of a circular cylinder of equal volume. Clearly then, I
the effect of noncircular shape on the pulsation frequency is very small and can be

neglected.
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Medwin and Daniel's (1990) Data

Radius (mm) Number of Bubbles

per wave
0.049793 1.077496

0.098775 5.843364
0.146066 9.543167
0.195942 6.155420
0.241447 3.727699
0.290967 3.075903
0.338176 2.068501
0.393046 0.927449
0.435092 0.971049

0.480297 1.010741

0.525057 0.946580
0.573988 0.575576
0.619666 0.201950
0.673652 0.734602
0.724229 0.569198
0.766772 0.619580
0.809555 0.290299
0.864299 0.095681
0.904934 0.188681
0.956758 0.492269
1.001740 0.172392

1.089012 0.355643
1.180596 0.145803
1.237824 0.581654
1.279882 0.186756
1.328908 0.141900
1.424710 0.136333
1.462899 0.346425

1.512605 0.096659
1.608160 0.457885

1.651267 0.087233
1.695529 0.091754
1.790135 0.227638
1.976126 0.668907
2.026273 0.224374
2.092206 0.089386
2.118586 0.083022
2.252422 0.452308
2.299955 0.276138
2.351762 0.198938
2.455483 0.205096
2.606970 0.262999
2.971469 0.189158
3.293926 0.184653
3.920059 0.181322
4.232015 0.194602
5.910966 0.103824
6.372480 0.098004

7.113351 0.097210
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